4nyc: Difference between revisions
No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[4nyc]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4NYC OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4NYC FirstGlance]. <br> | <table><tr><td colspan='2'>[[4nyc]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4NYC OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4NYC FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=A23:ADENOSINE-5-PHOSPHATE-2,3-CYCLIC+PHOSPHATE'>A23</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=MN:MANGANESE+(II)+ION'>MN</scene>, <scene name='pdbligand=SVN:THIENO[2,3-B]PYRAZIN-7-AMINE'>SVN</scene></td></tr> | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3.15Å</td></tr> | ||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=A23:ADENOSINE-5-PHOSPHATE-2,3-CYCLIC+PHOSPHATE'>A23</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=MN:MANGANESE+(II)+ION'>MN</scene>, <scene name='pdbligand=SVN:THIENO[2,3-B]PYRAZIN-7-AMINE'>SVN</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4nyc FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4nyc OCA], [https://pdbe.org/4nyc PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4nyc RCSB], [https://www.ebi.ac.uk/pdbsum/4nyc PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4nyc ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4nyc FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4nyc OCA], [https://pdbe.org/4nyc PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4nyc RCSB], [https://www.ebi.ac.uk/pdbsum/4nyc PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4nyc ProSAT]</span></td></tr> | ||
</table> | </table> |
Latest revision as of 20:04, 20 September 2023
Crystal structure of the E. coli thiM riboswitch in complex with thieno[2,3-b]pyrazin-7-amineCrystal structure of the E. coli thiM riboswitch in complex with thieno[2,3-b]pyrazin-7-amine
Structural highlights
Publication Abstract from PubMedThiamine pyrophosphate (TPP) riboswitches regulate essential genes in bacteria by changing conformation upon binding intracellular TPP. Previous studies using fragment-based approaches identified small molecule "fragments" that bind this gene-regulatory mRNA domain. Crystallographic studies now show that, despite having micromolar Kds, four different fragments bind the TPP riboswitch site-specifically, occupying the pocket that recognizes the aminopyrimidine of TPP. Unexpectedly, the unoccupied site that would recognize the pyrophosphate of TPP rearranges into a structure distinct from that of the cognate complex. This idiosyncratic fragment-induced conformation, also characterized by small-angle X-ray scattering and chemical probing, represents a possible mechanism for adventitious ligand discrimination by the riboswitch, and suggests that off-pathway conformations of RNAs can be targeted for drug development. Our structures, together with previous screening studies, demonstrate the feasibility of fragment-based drug discovery against RNA targets. Validating Fragment-Based Drug Discovery for Biological RNAs: Lead Fragments Bind and Remodel the TPP Riboswitch Specifically.,Warner KD, Homan P, Weeks KM, Smith AG, Abell C, Ferre-D'Amare AR Chem Biol. 2014 May 22;21(5):591-5. doi: 10.1016/j.chembiol.2014.03.007. Epub, 2014 Apr 24. PMID:24768306[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|