3fii: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
<StructureSection load='3fii' size='340' side='right'caption='[[3fii]], [[Resolution|resolution]] 2.17Å' scene=''> | <StructureSection load='3fii' size='340' side='right'caption='[[3fii]], [[Resolution|resolution]] 2.17Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[3fii]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/ | <table><tr><td colspan='2'>[[3fii]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Clostridium_botulinum Clostridium botulinum] and [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3FII OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3FII FirstGlance]. <br> | ||
</td></tr><tr id=' | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.17Å</td></tr> | ||
<tr id=' | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=00C:3-SULFO-D-ALANINE'>00C</scene>, <scene name='pdbligand=NH2:AMINO+GROUP'>NH2</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3fii FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3fii OCA], [https://pdbe.org/3fii PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3fii RCSB], [https://www.ebi.ac.uk/pdbsum/3fii PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3fii ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3fii FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3fii OCA], [https://pdbe.org/3fii PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3fii RCSB], [https://www.ebi.ac.uk/pdbsum/3fii PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3fii ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
[https://www.uniprot.org/uniprot/BXF_CLOBL BXF_CLOBL] Botulinum toxin causes flaccid paralysis by inhibiting neurotransmitter (acetylcholine) release from the presynaptic membranes of nerve terminals of the eukaryotic host skeletal and autonomic nervous system, with frequent heart or respiratory failure (PubMed:14423425). Precursor of botulinum neurotoxin F which may have 2 coreceptors; complex polysialylated gangliosides found on neural tissue and specific membrane-anchored proteins found in synaptic vesicles. Receptor proteins are exposed on host presynaptic cell membrane during neurotransmitter release, when the toxin heavy chain (HC) binds to them (PubMed:19476346, PubMed:19650874). Upon synaptic vesicle recycling the toxin is taken up via the endocytic pathway. When the pH of the toxin-containing endosome drops a structural rearrangement occurs so that the N-terminus of the HC forms pores that allows the light chain (LC) to translocate into the cytosol. Once in the cytosol the disulfide bond linking the 2 subunits is reduced and LC cleaves its target protein on synaptic vesicles, preventing their fusion with the cytoplasmic membrane and thus neurotransmitter release (By similarity). Requires complex gangliosides for full neurotoxicity (PubMed:19650874, PubMed:21483489). Electrical stimulation increases uptake of toxin, presumably by transiently exposing a receptor usually found in eukaryotic target synaptic vesicles (PubMed:19476346, PubMed:19650874). Blocks neurotransitter release by cleaving synaptobrevin-2/VAMP2 (PubMed:19476346). It is not clear whether a synaptic vesicle protein acts as its receptor; there is evidence for and against SV2 fulfilling this function (PubMed:19650874, PubMed:21483489, PubMed:19476346).[UniProtKB:P0DPI0]<ref>PMID:14423425</ref> <ref>PMID:19476346</ref> <ref>PMID:19650874</ref> <ref>PMID:21483489</ref> Has protease activity (PubMed:19476346, PubMed:19543288). After translocation into the eukaryotic host cytosol, inhibits neurotransmitter release by acting as a zinc endopeptidase that catalyzes the hydrolysis of the '58-Gln-|-Lys-59' bond of synaptobrevin-2/VAMP2 and probably also the equivalent 'Gln-|-Lys' sites in VAMP1 and VAMP3 (PubMed:19476346, PubMed:19543288). Substrate specificity is conferred by multiple interactions of LC with substrate (PubMed:19543288).[UniProtKB:P30996]<ref>PMID:19543288</ref> <ref>PMID:19476346</ref> Responsible for host epithelial cell transcytosis, host nerve cell targeting and translocation of light chain (LC) into host cytosol. Composed of 3 subdomains; the translocation domain (TD), and N-terminus and C-terminus of the receptor-binding domain (RBD). The RBD is responsible for the adherence of the toxin to the cell surface (PubMed:19476346, PubMed:19650874). The N-terminus of the TD wraps an extended belt around the perimeter of the LC, protecting Zn(2+) in the active site; it may also prevent premature LC dissociation from the translocation channel and protect toxin prior to translocation (By similarity). Isolated HC binds to host synaptosomes and neurons, significantly decreases uptake and toxicity of whole BoNT/F (PubMed:19476346, PubMed:19650874). Interferes with uptake of BoNT/E and to a lesser extent BoNT/C (PubMed:19650874). in vitro binds gangliosides GT1b, GD1b and GD1a (PubMed:19650874, PubMed:19476346, PubMed:21849494). Binds to synaptic vesicle glycoproteins SV2A, SV2B and SV2C which may serve as coreceptors with gangliosides (PubMed:19650874, PubMed:19476346). Interaction with SV2 proteins requires SV2 glycosylation (PubMed:19476346). However knockout SV2A/SV2B mice still cleave synaptobrevin, leaving the identification of its receptor unclear (PubMed:21483489).[UniProtKB:P0DPI0]<ref>PMID:19476346</ref> <ref>PMID:19650874</ref> <ref>PMID:21483489</ref> | |||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Line 39: | Line 36: | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: | [[Category: Clostridium botulinum]] | ||
[[Category: | [[Category: Homo sapiens]] | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
[[Category: Agarwal | [[Category: Agarwal R]] | ||
[[Category: Swaminathan | [[Category: Swaminathan S]] | ||
Latest revision as of 09:46, 6 September 2023
Crystal structure of Clostridium botulinum neurotoxin serotype F catalytic domain with an inhibitor (inh2)Crystal structure of Clostridium botulinum neurotoxin serotype F catalytic domain with an inhibitor (inh2)
Structural highlights
FunctionBXF_CLOBL Botulinum toxin causes flaccid paralysis by inhibiting neurotransmitter (acetylcholine) release from the presynaptic membranes of nerve terminals of the eukaryotic host skeletal and autonomic nervous system, with frequent heart or respiratory failure (PubMed:14423425). Precursor of botulinum neurotoxin F which may have 2 coreceptors; complex polysialylated gangliosides found on neural tissue and specific membrane-anchored proteins found in synaptic vesicles. Receptor proteins are exposed on host presynaptic cell membrane during neurotransmitter release, when the toxin heavy chain (HC) binds to them (PubMed:19476346, PubMed:19650874). Upon synaptic vesicle recycling the toxin is taken up via the endocytic pathway. When the pH of the toxin-containing endosome drops a structural rearrangement occurs so that the N-terminus of the HC forms pores that allows the light chain (LC) to translocate into the cytosol. Once in the cytosol the disulfide bond linking the 2 subunits is reduced and LC cleaves its target protein on synaptic vesicles, preventing their fusion with the cytoplasmic membrane and thus neurotransmitter release (By similarity). Requires complex gangliosides for full neurotoxicity (PubMed:19650874, PubMed:21483489). Electrical stimulation increases uptake of toxin, presumably by transiently exposing a receptor usually found in eukaryotic target synaptic vesicles (PubMed:19476346, PubMed:19650874). Blocks neurotransitter release by cleaving synaptobrevin-2/VAMP2 (PubMed:19476346). It is not clear whether a synaptic vesicle protein acts as its receptor; there is evidence for and against SV2 fulfilling this function (PubMed:19650874, PubMed:21483489, PubMed:19476346).[UniProtKB:P0DPI0][1] [2] [3] [4] Has protease activity (PubMed:19476346, PubMed:19543288). After translocation into the eukaryotic host cytosol, inhibits neurotransmitter release by acting as a zinc endopeptidase that catalyzes the hydrolysis of the '58-Gln-|-Lys-59' bond of synaptobrevin-2/VAMP2 and probably also the equivalent 'Gln-|-Lys' sites in VAMP1 and VAMP3 (PubMed:19476346, PubMed:19543288). Substrate specificity is conferred by multiple interactions of LC with substrate (PubMed:19543288).[UniProtKB:P30996][5] [6] Responsible for host epithelial cell transcytosis, host nerve cell targeting and translocation of light chain (LC) into host cytosol. Composed of 3 subdomains; the translocation domain (TD), and N-terminus and C-terminus of the receptor-binding domain (RBD). The RBD is responsible for the adherence of the toxin to the cell surface (PubMed:19476346, PubMed:19650874). The N-terminus of the TD wraps an extended belt around the perimeter of the LC, protecting Zn(2+) in the active site; it may also prevent premature LC dissociation from the translocation channel and protect toxin prior to translocation (By similarity). Isolated HC binds to host synaptosomes and neurons, significantly decreases uptake and toxicity of whole BoNT/F (PubMed:19476346, PubMed:19650874). Interferes with uptake of BoNT/E and to a lesser extent BoNT/C (PubMed:19650874). in vitro binds gangliosides GT1b, GD1b and GD1a (PubMed:19650874, PubMed:19476346, PubMed:21849494). Binds to synaptic vesicle glycoproteins SV2A, SV2B and SV2C which may serve as coreceptors with gangliosides (PubMed:19650874, PubMed:19476346). Interaction with SV2 proteins requires SV2 glycosylation (PubMed:19476346). However knockout SV2A/SV2B mice still cleave synaptobrevin, leaving the identification of its receptor unclear (PubMed:21483489).[UniProtKB:P0DPI0][7] [8] [9] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedClostridium botulinum neurotoxins (BoNTs) cleave neuronal proteins responsible for neurotransmitter release, causing the neuroparalytic disease botulism. BoNT serotypes B, D, F and G cleave and inactivate vesicle-associated membrane protein (VAMP), each at a unique peptide bond. The specificity of BoNTs depends on the mode of substrate recognition. We have investigated the mechanism of substrate recognition of BoNT F by determining the crystal structures of its complex with two substrate-based inhibitors, VAMP 22-58/Gln58D-cysteine and 27-58/Gln58D-cysteine. The inhibitors bind to BoNT F in the canonical direction (as seen for BoNTs A and E substrates) but are positioned specifically via three major exosites away from the active site. The cysteine sulfur of the inhibitors interacts with the zinc and exists as sulfinic acid in the inhibitor VAMP 27-58/Gln58D-cysteine. Arg133 and Arg171, which form part of two separate exosites, are crucial for substrate binding and catalysis. Mode of VAMP substrate recognition and inhibition of Clostridium botulinum neurotoxin F.,Agarwal R, Schmidt JJ, Stafford RG, Swaminathan S Nat Struct Mol Biol. 2009 Jul;16(7):789-94. Epub 2009 Jun 21. PMID:19543288[10] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|