2q7t: Difference between revisions

No edit summary
No edit summary
 
Line 4: Line 4:
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[2q7t]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2Q7T OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2Q7T FirstGlance]. <br>
<table><tr><td colspan='2'>[[2q7t]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2Q7T OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2Q7T FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=TMP:THYMIDINE-5-PHOSPHATE'>TMP</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.42&#8491;</td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[1p4d|1p4d]], [[1a0i|1a0i]], [[1omh|1omh]], [[1osb|1osb]], [[1qx0|1qx0]], [[2cdm|2cdm]], [[2q7u|2q7u]]</div></td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=TMP:THYMIDINE-5-PHOSPHATE'>TMP</scene></td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">traI ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=562 Escherichia coli])</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2q7t FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2q7t OCA], [https://pdbe.org/2q7t PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2q7t RCSB], [https://www.ebi.ac.uk/pdbsum/2q7t PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2q7t ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2q7t FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2q7t OCA], [https://pdbe.org/2q7t PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2q7t RCSB], [https://www.ebi.ac.uk/pdbsum/2q7t PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2q7t ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
[[https://www.uniprot.org/uniprot/TRAI1_ECOLI TRAI1_ECOLI]] Conjugative DNA transfer (CDT) is the unidirectional transfer of ssDNA plasmid from a donor to a recipient cell. It is the central mechanism by which antibiotic resistance and virulence factors are propagated in bacterial populations. Part of the relaxosome, which facilitates a site- and strand-specific cut in the origin of transfer by TraI, at the nic site. Relaxosome formation requires binding of IHF and TraY to the oriT region, which then faciliates binding of TraI relaxase. TraI forms a covalent 5'-phosphotyrosine intermediate linkage to the ssDNA. The transesterified T-strand moves from the donor cell to the recipient cell in a 5'to 3' direction, with the DNA helicase activity of TraI unwinding the DNA. DNA transfer occurs via the conjugative pore (transferosome) an intercellular junction mediated by a type IV secretion system, with TraD providing the means to link the relaxosome to the conjugative pore. The relaxase completes DNA transfer by reversing the covalent phosphotyrosine linkage and releasing the T-strand.<ref>PMID:12637015</ref> <ref>PMID:6308637</ref> <ref>PMID:8386720</ref> <ref>PMID:7499339</ref> <ref>PMID:11560509</ref>  TraI has also been identified as DNA helicase I. DNA. helicase I is a potent, highly processive DNA-dependent ATPase, able to unwind about 1.1 kb dsDNA per second in a 5' to 3' manner.<ref>PMID:12637015</ref> <ref>PMID:6308637</ref> <ref>PMID:8386720</ref> <ref>PMID:7499339</ref> <ref>PMID:11560509</ref>
[https://www.uniprot.org/uniprot/TRAI1_ECOLI TRAI1_ECOLI] Conjugative DNA transfer (CDT) is the unidirectional transfer of ssDNA plasmid from a donor to a recipient cell. It is the central mechanism by which antibiotic resistance and virulence factors are propagated in bacterial populations. Part of the relaxosome, which facilitates a site- and strand-specific cut in the origin of transfer by TraI, at the nic site. Relaxosome formation requires binding of IHF and TraY to the oriT region, which then faciliates binding of TraI relaxase. TraI forms a covalent 5'-phosphotyrosine intermediate linkage to the ssDNA. The transesterified T-strand moves from the donor cell to the recipient cell in a 5'to 3' direction, with the DNA helicase activity of TraI unwinding the DNA. DNA transfer occurs via the conjugative pore (transferosome) an intercellular junction mediated by a type IV secretion system, with TraD providing the means to link the relaxosome to the conjugative pore. The relaxase completes DNA transfer by reversing the covalent phosphotyrosine linkage and releasing the T-strand.<ref>PMID:12637015</ref> <ref>PMID:6308637</ref> <ref>PMID:8386720</ref> <ref>PMID:7499339</ref> <ref>PMID:11560509</ref>  TraI has also been identified as DNA helicase I. DNA. helicase I is a potent, highly processive DNA-dependent ATPase, able to unwind about 1.1 kb dsDNA per second in a 5' to 3' manner.<ref>PMID:12637015</ref> <ref>PMID:6308637</ref> <ref>PMID:8386720</ref> <ref>PMID:7499339</ref> <ref>PMID:11560509</ref>  
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Line 39: Line 38:
[[Category: Escherichia coli]]
[[Category: Escherichia coli]]
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: Lujan, S A]]
[[Category: Lujan SA]]
[[Category: Redinbo, M R]]
[[Category: Redinbo MR]]
[[Category: Conjugation]]
[[Category: Hydrolase]]
[[Category: Relaxase]]

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA