2q3c: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
<StructureSection load='2q3c' size='340' side='right'caption='[[2q3c]], [[Resolution|resolution]] 2.10Å' scene=''> | <StructureSection load='2q3c' size='340' side='right'caption='[[2q3c]], [[Resolution|resolution]] 2.10Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[2q3c]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/ | <table><tr><td colspan='2'>[[2q3c]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Mycobacterium_tuberculosis Mycobacterium tuberculosis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2Q3C OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2Q3C FirstGlance]. <br> | ||
</td></tr><tr id=' | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.1Å</td></tr> | ||
<tr id=' | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=LLP:(2S)-2-AMINO-6-[[3-HYDROXY-2-METHYL-5-(PHOSPHONOOXYMETHYL)PYRIDIN-4-YL]METHYLIDENEAMINO]HEXANOIC+ACID'>LLP</scene>, <scene name='pdbligand=MPD:(4S)-2-METHYL-2,4-PENTANEDIOL'>MPD</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2q3c FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2q3c OCA], [https://pdbe.org/2q3c PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2q3c RCSB], [https://www.ebi.ac.uk/pdbsum/2q3c PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2q3c ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2q3c FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2q3c OCA], [https://pdbe.org/2q3c PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2q3c RCSB], [https://www.ebi.ac.uk/pdbsum/2q3c PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2q3c ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
[https://www.uniprot.org/uniprot/CYSK_MYCTU CYSK_MYCTU] Catalyzes the conversion of O-acetylserine (OAS) to cysteine through the elimination of acetate and addition of hydrogen sulfide. | |||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Line 36: | Line 33: | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
[[Category: Mycobacterium tuberculosis]] | [[Category: Mycobacterium tuberculosis]] | ||
[[Category: | [[Category: Schneider G]] | ||
[[Category: | [[Category: Schnell R]] | ||
Latest revision as of 14:17, 30 August 2023
2.1 A Resolution Crystal Structure of O-Acetylserine Sulfhydrylase (OASS) Holoenzyme From MYCOBACTERIUM TUBERCULOSIS in Complex with the Inhibitory Peptide DFSI2.1 A Resolution Crystal Structure of O-Acetylserine Sulfhydrylase (OASS) Holoenzyme From MYCOBACTERIUM TUBERCULOSIS in Complex with the Inhibitory Peptide DFSI
Structural highlights
FunctionCYSK_MYCTU Catalyzes the conversion of O-acetylserine (OAS) to cysteine through the elimination of acetate and addition of hydrogen sulfide. Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedCysteine biosynthetic genes are up-regulated in the persistent phase of Mycobacterium tuberculosis, and the corresponding enzymes are therefore of interest as potential targets for novel antibacterial agents. cysK1 is one of these genes and has been annotated as coding for an O-acetylserine sulfhydrylase. Recombinant CysK1 is a pyridoxal phosphate (PLP)-dependent enzyme that catalyzes the conversion of O-acetylserine to cysteine. The crystal structure of the enzyme was determined to 1.8A resolution. CysK1 belongs to the family of fold type II PLP enzymes and is similar in structure to other O-acetylserine sulfhydrylases. We were able to trap the alpha-aminoacrylate reaction intermediate and determine its structure by cryocrystallography. Formation of the aminoacrylate complex is accompanied by a domain rotation resulting in active site closure. The aminoacrylate moiety is bound in the active site via the covalent linkage to the PLP cofactor and by hydrogen bonds of its carboxyl group to several enzyme residues. The catalytic lysine residue is positioned such that it can protonate the Calpha-carbon atom of the aminoacrylate only from the si-face, resulting in the formation of L-cysteine. CysK1 is competitively inhibited by a four-residue peptide derived from the C-terminal of serine acetyl transferase. The crystallographic analysis reveals that the peptide binds to the enzyme active site, suggesting that CysK1 forms an bi-enzyme complex with serine acetyl transferase, in a similar manner to other bacterial and plant O-acetylserine sulfhydrylases. The structure of the enzyme-peptide complex provides a framework for the design of strong binding inhibitors. Structural insights into catalysis and inhibition of O-acetylserine sulfhydrylase from Mycobacterium tuberculosis. Crystal structures of the enzyme alpha-aminoacrylate intermediate and an enzyme-inhibitor complex.,Schnell R, Oehlmann W, Singh M, Schneider G J Biol Chem. 2007 Aug 10;282(32):23473-81. Epub 2007 Jun 13. PMID:17567578[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|