1s2u: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 3: Line 3:
<StructureSection load='1s2u' size='340' side='right'caption='[[1s2u]], [[Resolution|resolution]] 2.00&Aring;' scene=''>
<StructureSection load='1s2u' size='340' side='right'caption='[[1s2u]], [[Resolution|resolution]] 2.00&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[1s2u]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Blue_mussel Blue mussel]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1S2U OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1S2U FirstGlance]. <br>
<table><tr><td colspan='2'>[[1s2u]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Mytilus_edulis Mytilus edulis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1S2U OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1S2U FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=PEG:DI(HYDROXYETHYL)ETHER'>PEG</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2&#8491;</td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[1pym|1pym]], [[1m1b|1m1b]], [[1s2t|1s2t]], [[1s2v|1s2v]], [[1s2w|1s2w]]</div></td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=PEG:DI(HYDROXYETHYL)ETHER'>PEG</scene></td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Phosphoenolpyruvate_mutase Phosphoenolpyruvate mutase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=5.4.2.9 5.4.2.9] </span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1s2u FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1s2u OCA], [https://pdbe.org/1s2u PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1s2u RCSB], [https://www.ebi.ac.uk/pdbsum/1s2u PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1s2u ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1s2u FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1s2u OCA], [https://pdbe.org/1s2u PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1s2u RCSB], [https://www.ebi.ac.uk/pdbsum/1s2u PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1s2u ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
[[https://www.uniprot.org/uniprot/PEPM_MYTED PEPM_MYTED]] Formation of a carbon-phosphorus bond by converting phosphoenolpyruvate (PEP) to phosphonopyruvate (P-Pyr).  
[https://www.uniprot.org/uniprot/PEPM_MYTED PEPM_MYTED] Formation of a carbon-phosphorus bond by converting phosphoenolpyruvate (PEP) to phosphonopyruvate (P-Pyr).
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Line 34: Line 33:
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Blue mussel]]
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: Phosphoenolpyruvate mutase]]
[[Category: Mytilus edulis]]
[[Category: Dunaway-Mariano, D]]
[[Category: Dunaway-Mariano D]]
[[Category: Han, Y]]
[[Category: Han Y]]
[[Category: Herzberg, O]]
[[Category: Herzberg O]]
[[Category: Howard, A]]
[[Category: Howard A]]
[[Category: Jia, Y]]
[[Category: Jia Y]]
[[Category: Liu, S]]
[[Category: Liu S]]
[[Category: Lu, Z]]
[[Category: Lu Z]]
[[Category: Isomerase]]
[[Category: Pep mutase]]
[[Category: Phosphonate biosynthesis pathway]]
[[Category: Phosphonopyruvate]]

Latest revision as of 09:12, 23 August 2023

Crystal structure of the D58A phosphoenolpyruvate mutase mutant proteinCrystal structure of the D58A phosphoenolpyruvate mutase mutant protein

Structural highlights

1s2u is a 2 chain structure with sequence from Mytilus edulis. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

PEPM_MYTED Formation of a carbon-phosphorus bond by converting phosphoenolpyruvate (PEP) to phosphonopyruvate (P-Pyr).

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Previous work has indicated that PEP mutase catalyzes the rearrangement of phosphoenolpyruvate to phosphonopyruvate by a dissociative mechanism. The crystal structure of the mutase with Mg(II) and sulfopyruvate (a phosphonopyruvate analogue) bound showed that the substrate is anchored to the active site by the Mg(II), and shielded from solvent by a large loop (residues 115-133). Here, the crystal structures of wild-type and D58A mutases, in the apo state and in complex with Mg(II), are reported. In both unbound and Mg(II)-bound states, the active site is accessible to the solvent. The loop (residues 115-133), which in the enzyme-inhibitor complexes covers the active site cavity, is partially disordered or adopts a conformation that allows access to the cavity. In the apo state, the residues associated with Mg(II) binding are poised to accept the metal ion. When Mg(II) binds, the coordination is the same as that previously observed in the enzyme-Mg(II) sulfopyruvate complex, except that the coordination positions occupied by two ligand oxygen atoms are occupied by two water molecules. When the loop opens, three key active site residues are displaced from the active site, Lys120, Asn122, and Leu124. Lys120 mediates Mg(II) coordination. Asn122 and Leu124 surround the transferring phosphoryl group, and thus prevent substrate hydrolysis. Amino acid replacement of any one of these three loop residues results in a significant loss of catalytic activity. It is hypothesized that the loop serves to gate the mutase active site, interconverting between an open conformation that allows substrate binding and product release and a closed conformation that separates the reaction site from the solvent during catalysis.

Conformational flexibility of PEP mutase.,Liu S, Lu Z, Han Y, Jia Y, Howard A, Dunaway-Mariano D, Herzberg O Biochemistry. 2004 Apr 20;43(15):4447-53. PMID:15078090[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Liu S, Lu Z, Han Y, Jia Y, Howard A, Dunaway-Mariano D, Herzberg O. Conformational flexibility of PEP mutase. Biochemistry. 2004 Apr 20;43(15):4447-53. PMID:15078090 doi:10.1021/bi036255h

1s2u, resolution 2.00Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA