5c88: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
<StructureSection load='5c88' size='340' side='right'caption='[[5c88]], [[Resolution|resolution]] 2.49Å' scene=''> | <StructureSection load='5c88' size='340' side='right'caption='[[5c88]], [[Resolution|resolution]] 2.49Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[5c88]] is a 2 chain structure with sequence from [ | <table><tr><td colspan='2'>[[5c88]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Saccharolobus_solfataricus_P2 Saccharolobus solfataricus P2]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5C88 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5C88 FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=COA:COENZYME+A'>COA</scene | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=COA:COENZYME+A'>COA</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5c88 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5c88 OCA], [https://pdbe.org/5c88 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5c88 RCSB], [https://www.ebi.ac.uk/pdbsum/5c88 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5c88 ProSAT]</span></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | |||
</table> | </table> | ||
== Function == | |||
[https://www.uniprot.org/uniprot/NAT_SACS2 NAT_SACS2] Displays alpha (N-terminal) acetyltransferase activity. Catalyzes the covalent attachment of an acetyl moiety from acetyl-CoA to the free alpha-amino group at the N-terminus of a protein (PubMed:17511810, PubMed:23959863, PubMed:25728374). NAT is able to acetylate the alpha-amino group of methionine, alanine and serine N-terminal residue substrates, however it has a preference for Ser-N-terminal substrates (PubMed:17511810, PubMed:23959863, PubMed:25728374).<ref>PMID:17511810</ref> <ref>PMID:23959863</ref> <ref>PMID:25728374</ref> | |||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
== Publication Abstract from PubMed == | == Publication Abstract from PubMed == | ||
Line 23: | Line 23: | ||
</StructureSection> | </StructureSection> | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
[[Category: | [[Category: Saccharolobus solfataricus P2]] | ||
[[Category: Chang YY]] | |||
[[Category: Chang | [[Category: Hsu CH]] | ||
[[Category: Hsu | |||
Revision as of 09:23, 7 June 2023
Crystal structure of Ard1 N-terminal acetyltransferase from Sulfolobus solfataricus in monoclinic formCrystal structure of Ard1 N-terminal acetyltransferase from Sulfolobus solfataricus in monoclinic form
Structural highlights
FunctionNAT_SACS2 Displays alpha (N-terminal) acetyltransferase activity. Catalyzes the covalent attachment of an acetyl moiety from acetyl-CoA to the free alpha-amino group at the N-terminus of a protein (PubMed:17511810, PubMed:23959863, PubMed:25728374). NAT is able to acetylate the alpha-amino group of methionine, alanine and serine N-terminal residue substrates, however it has a preference for Ser-N-terminal substrates (PubMed:17511810, PubMed:23959863, PubMed:25728374).[1] [2] [3] Publication Abstract from PubMedStructural comparison indicates the loop region between beta3 and beta4 of SsArd1 was more extended than corresponding region of mesophilic Nats and formed a plastically hydrogen bond network mainly via two Ser residues. Strikingly, two single-point mutants showed ~3 degrees C decrease in melting temperature, while two other variants showed a ~7 degrees C decrease in melting temperature, which correlated to the seriously reducing enzymatic activity. To our knowledge, this is the first discovery of a loop region capable of remarkably improving protein thermostability and to provide a novel possibility to engineer heat-resistant proteins. Multiple conformations of the loop region confers heat-resistance of SsArd1, a thermophilic NatA.,Chang YY, Hsu CH Chembiochem. 2015 Nov 23. doi: 10.1002/cbic.201500568. PMID:26593285[4] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|