4x1u: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
<StructureSection load='4x1u' size='340' side='right'caption='[[4x1u]], [[Resolution|resolution]] 1.87Å' scene=''> | <StructureSection load='4x1u' size='340' side='right'caption='[[4x1u]], [[Resolution|resolution]] 1.87Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[4x1u]] is a 2 chain structure with sequence from [ | <table><tr><td colspan='2'>[[4x1u]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Mycobacterium_tuberculosis Mycobacterium tuberculosis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4X1U OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4X1U FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CSO:S-HYDROXYCYSTEINE'>CSO</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4x1u FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4x1u OCA], [https://pdbe.org/4x1u PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4x1u RCSB], [https://www.ebi.ac.uk/pdbsum/4x1u PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4x1u ProSAT]</span></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | |||
</table> | </table> | ||
== Function == | |||
[https://www.uniprot.org/uniprot/AHPE_MYCTU AHPE_MYCTU] Thiol-specific peroxidase that catalyzes the reduction of hydrogen peroxide and organic hydroperoxides to water and alcohols, respectively. Plays a role in cell protection against oxidative stress by detoxifying peroxides. May represent an important antioxidant defense against cytotoxic peroxides, especially peroxynitrite, which can be formed by activated macrophages during infection.<ref>PMID:19737009</ref> <ref>PMID:24379404</ref> | |||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
== Publication Abstract from PubMed == | == Publication Abstract from PubMed == | ||
Line 22: | Line 20: | ||
==See Also== | ==See Also== | ||
*[[Thioredoxin | *[[Thioredoxin reductase 3D structures|Thioredoxin reductase 3D structures]] | ||
== References == | == References == | ||
<references/> | <references/> | ||
Line 28: | Line 26: | ||
</StructureSection> | </StructureSection> | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
[[Category: | [[Category: Mycobacterium tuberculosis]] | ||
[[Category: Messens | [[Category: Messens J]] | ||
[[Category: Pallo | [[Category: Pallo A]] | ||
Revision as of 00:07, 13 April 2023
The structure of AhpE from Mycobacterium tuberculosis revisitedThe structure of AhpE from Mycobacterium tuberculosis revisited
Structural highlights
FunctionAHPE_MYCTU Thiol-specific peroxidase that catalyzes the reduction of hydrogen peroxide and organic hydroperoxides to water and alcohols, respectively. Plays a role in cell protection against oxidative stress by detoxifying peroxides. May represent an important antioxidant defense against cytotoxic peroxides, especially peroxynitrite, which can be formed by activated macrophages during infection.[1] [2] Publication Abstract from PubMedIn many established methods, identification of hydrogen bonds (H-bonds) is primarily based on pairwise comparison of distances between atoms. These methods often give rise to systematic errors when sulfur is involved. A more accurate method is the non-covalent interaction index, which determines the strength of the H-bonds based on the associated electron density and its gradient. We applied the NCI index on the active site of a single-cysteine peroxiredoxin. We found a different sulfur hydrogen-bonding network to that typically found by established methods, and we propose a more accurate equation for determining sulfur H-bonds based on geometrical criteria. This new algorithm will be implemented in the next release of the widely-used CHARMM program (version 41b), and will be particularly useful for analyzing water molecule-mediated H-bonds involving different atom types. Furthermore, based on the identification of the weakest sulfur-water H-bond, the location of hydrogen peroxide for the nucleophilic attack by the cysteine sulfur can be predicted. In general, current methods to determine H-bonds will need to be reevaluated, thereby leading to better understanding of the catalytic mechanisms in which sulfur chemistry is involved. Revisiting sulfur H-bonds in proteins: The example of peroxiredoxin AhpE.,van Bergen LA, Alonso M, Pallo A, Nilsson L, De Proft F, Messens J Sci Rep. 2016 Jul 29;6:30369. doi: 10.1038/srep30369. PMID:27468924[3] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|