4wy3: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
<StructureSection load='4wy3' size='340' side='right'caption='[[4wy3]], [[Resolution|resolution]] 1.89Å' scene=''> | <StructureSection load='4wy3' size='340' side='right'caption='[[4wy3]], [[Resolution|resolution]] 1.89Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[4wy3]] is a 1 chain structure. This structure supersedes the now removed PDB entry [http://oca.weizmann.ac.il/oca-bin/send-pdb?obs=1&id=4twx 4twx]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4WY3 OCA]. For a <b>guided tour on the structure components</b> use [ | <table><tr><td colspan='2'>[[4wy3]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Severe_acute_respiratory_syndrome-related_coronavirus Severe acute respiratory syndrome-related coronavirus]. This structure supersedes the now removed PDB entry [http://oca.weizmann.ac.il/oca-bin/send-pdb?obs=1&id=4twx 4twx]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4WY3 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4WY3 FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=3X5:(2S)-2-({[(3R,4AS,8AR)-2-(BIPHENYL-4-YLCARBONYL)DECAHYDROISOQUINOLIN-3-YL]METHYL}AMINO)-3-(1H-IMIDAZOL-5-YL)PROPANAL'>3X5</scene> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=3X5:(2S)-2-({[(3R,4AS,8AR)-2-(BIPHENYL-4-YLCARBONYL)DECAHYDROISOQUINOLIN-3-YL]METHYL}AMINO)-3-(1H-IMIDAZOL-5-YL)PROPANAL'>3X5</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4wy3 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4wy3 OCA], [https://pdbe.org/4wy3 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4wy3 RCSB], [https://www.ebi.ac.uk/pdbsum/4wy3 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4wy3 ProSAT]</span></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | |||
</table> | </table> | ||
== Function == | == Function == | ||
[ | [https://www.uniprot.org/uniprot/R1AB_SARS R1AB_SARS] Multifunctional protein involved in the transcription and replication of viral RNAs. Contains the proteinases responsible for the cleavages of the polyprotein. Inhibits host translation by interacting with the 40S ribosomal subunit. The nsp1-40S ribosome complex further induces an endonucleolytic cleavage near the 5'UTR of host mRNAs, targeting them for degradation. Viral mRNAs are not susceptible to nsp1-mediated endonucleolytic RNA cleavage thanks to the presence of a 5'-end leader sequence and are therefore protected from degradation. By suppressing host gene expression, nsp1 facilitates efficient viral gene expression in infected cells and evasion from host immune response (PubMed:23035226). May disrupt nuclear pore function by binding and displacing host NUP93 (PubMed:30943371).<ref>PMID:23035226</ref> <ref>PMID:30943371</ref> May play a role in the modulation of host cell survival signaling pathway by interacting with host PHB and PHB2. Indeed, these two proteins play a role in maintaining the functional integrity of the mitochondria and protecting cells from various stresses.<ref>PMID:19640993</ref> Responsible for the cleavages located at the N-terminus of the replicase polyprotein. In addition, PL-PRO possesses a deubiquitinating/deISGylating activity and processes both 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains from cellular substrates (PubMed:17692280). Plays a role in host membrane rearrangement that leads to creation of cytoplasmic double-membrane vesicles (DMV) necessary for viral replication. Nsp3, nsp4 and nsp6 together are sufficient to form DMV (PubMed:24410069). Antagonizes innate immune induction of type I interferon by blocking the phosphorylation, dimerization and subsequent nuclear translocation of host IRF3 (PubMed:19369340, PubMed:24622840). Prevents also host NF-kappa-B signaling.<ref>PMID:16271890</ref> <ref>PMID:17692280</ref> <ref>PMID:19369340</ref> <ref>PMID:24622840</ref> <ref>PMID:24410069</ref> Plays a role in host membrane rearrangement that leads to creation of cytoplasmic double-membrane vesicles (DMV) necessary for viral replication. Alone appears incapable to induce membrane curvature, but together with nsp3 is able to induce paired membranes. Nsp3, nsp4 and nsp6 together are sufficient to form DMV.<ref>PMID:23943763</ref> <ref>PMID:24410069</ref> Cleaves the C-terminus of replicase polyprotein at 11 sites. Recognizes substrates containing the core sequence [ILMVF]-Q-|-[SGACN]. Also able to bind an ADP-ribose-1''-phosphate (ADRP). May cleave host ATP6V1G1 thereby modifying host vacuoles intracellular pH.[PROSITE-ProRule:PRU00772]<ref>PMID:16226257</ref> Plays a role in host membrane rearrangement that leads to creation of cytoplasmic double-membrane vesicles (DMV) necessary for viral replication. Nsp3, nsp4 and nsp6 together are sufficient to form DMV (PubMed:24410069). Plays a role in the initial induction of autophagosomes from host reticulum endoplasmic. Later, limits the expansion of these phagosomes that are no longer able to deliver viral components to lysosomes (PubMed:24991833).<ref>PMID:24991833</ref> <ref>PMID:24410069</ref> Forms a hexadecamer with nsp8 (8 subunits of each) that may participate in viral replication by acting as a primase. Alternatively, may synthesize substantially longer products than oligonucleotide primers.<ref>PMID:22039154</ref> Forms a hexadecamer with nsp7 (8 subunits of each) that may participate in viral replication by acting as a primase. Alternatively, may synthesize substantially longer products than oligonucleotide primers.<ref>PMID:22039154</ref> May participate in viral replication by acting as a ssRNA-binding protein.<ref>PMID:19153232</ref> Plays a pivotal role in viral transcription by stimulating both nsp14 3'-5' exoribonuclease and nsp16 2'-O-methyltransferase activities. Therefore plays an essential role in viral mRNAs cap methylation.<ref>PMID:22635272</ref> Responsible for replication and transcription of the viral RNA genome.<ref>PMID:22791111</ref> Multi-functional protein with a zinc-binding domain in N-terminus displaying RNA and DNA duplex-unwinding activities with 5' to 3' polarity. Activity of helicase is dependent on magnesium.<ref>PMID:12917423</ref> <ref>PMID:22615777</ref> Enzyme possessing two different activities: an exoribonuclease activity acting on both ssRNA and dsRNA in a 3' to 5' direction and a N7-guanine methyltransferase activity (PubMed:16549795, PubMed:20421945, PubMed:22635272). Acts as a proofreading exoribonuclease for RNA replication, thereby lowering The sensitivity of the virus to RNA mutagens (PubMed:23966862, PubMed:29511076, PubMed:21593585).<ref>PMID:16549795</ref> <ref>PMID:20421945</ref> <ref>PMID:21593585</ref> <ref>PMID:22635272</ref> <ref>PMID:23966862</ref> <ref>PMID:29511076</ref> Mn(2+)-dependent, uridylate-specific enzyme, which leaves 2'-3'-cyclic phosphates 5' to the cleaved bond. Methyltransferase that mediates mRNA cap 2'-O-ribose methylation to the 5'-cap structure of viral mRNAs. N7-methyl guanosine cap is a prerequisite for binding of nsp16. Therefore plays an essential role in viral mRNAs cap methylation which is essential to evade immune system.<ref>PMID:18417574</ref> <ref>PMID:20421945</ref> | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
== Publication Abstract from PubMed == | == Publication Abstract from PubMed == | ||
Line 21: | Line 20: | ||
==See Also== | ==See Also== | ||
*[[ | *[[Virus protease 3D structures|Virus protease 3D structures]] | ||
== References == | == References == | ||
<references/> | <references/> | ||
Line 27: | Line 26: | ||
</StructureSection> | </StructureSection> | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
[[Category: Akaji | [[Category: Severe acute respiratory syndrome-related coronavirus]] | ||
[[Category: Nakagawa | [[Category: Akaji K]] | ||
[[Category: Sanjho | [[Category: Nakagawa A]] | ||
[[Category: Shimamoto | [[Category: Sanjho A]] | ||
[[Category: Teruya | [[Category: Shimamoto Y]] | ||
[[Category: Yamashita | [[Category: Teruya K]] | ||
[[Category: Yamashita E]] | |||
Revision as of 00:03, 13 April 2023
Structure of SARS-3CL protease complex with a phenylbenzoyl (R,S)-N-decalin type inhibitorStructure of SARS-3CL protease complex with a phenylbenzoyl (R,S)-N-decalin type inhibitor
Structural highlights
FunctionR1AB_SARS Multifunctional protein involved in the transcription and replication of viral RNAs. Contains the proteinases responsible for the cleavages of the polyprotein. Inhibits host translation by interacting with the 40S ribosomal subunit. The nsp1-40S ribosome complex further induces an endonucleolytic cleavage near the 5'UTR of host mRNAs, targeting them for degradation. Viral mRNAs are not susceptible to nsp1-mediated endonucleolytic RNA cleavage thanks to the presence of a 5'-end leader sequence and are therefore protected from degradation. By suppressing host gene expression, nsp1 facilitates efficient viral gene expression in infected cells and evasion from host immune response (PubMed:23035226). May disrupt nuclear pore function by binding and displacing host NUP93 (PubMed:30943371).[1] [2] May play a role in the modulation of host cell survival signaling pathway by interacting with host PHB and PHB2. Indeed, these two proteins play a role in maintaining the functional integrity of the mitochondria and protecting cells from various stresses.[3] Responsible for the cleavages located at the N-terminus of the replicase polyprotein. In addition, PL-PRO possesses a deubiquitinating/deISGylating activity and processes both 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains from cellular substrates (PubMed:17692280). Plays a role in host membrane rearrangement that leads to creation of cytoplasmic double-membrane vesicles (DMV) necessary for viral replication. Nsp3, nsp4 and nsp6 together are sufficient to form DMV (PubMed:24410069). Antagonizes innate immune induction of type I interferon by blocking the phosphorylation, dimerization and subsequent nuclear translocation of host IRF3 (PubMed:19369340, PubMed:24622840). Prevents also host NF-kappa-B signaling.[4] [5] [6] [7] [8] Plays a role in host membrane rearrangement that leads to creation of cytoplasmic double-membrane vesicles (DMV) necessary for viral replication. Alone appears incapable to induce membrane curvature, but together with nsp3 is able to induce paired membranes. Nsp3, nsp4 and nsp6 together are sufficient to form DMV.[9] [10] Cleaves the C-terminus of replicase polyprotein at 11 sites. Recognizes substrates containing the core sequence [ILMVF]-Q-|-[SGACN]. Also able to bind an ADP-ribose-1-phosphate (ADRP). May cleave host ATP6V1G1 thereby modifying host vacuoles intracellular pH.[PROSITE-ProRule:PRU00772][11] Plays a role in host membrane rearrangement that leads to creation of cytoplasmic double-membrane vesicles (DMV) necessary for viral replication. Nsp3, nsp4 and nsp6 together are sufficient to form DMV (PubMed:24410069). Plays a role in the initial induction of autophagosomes from host reticulum endoplasmic. Later, limits the expansion of these phagosomes that are no longer able to deliver viral components to lysosomes (PubMed:24991833).[12] [13] Forms a hexadecamer with nsp8 (8 subunits of each) that may participate in viral replication by acting as a primase. Alternatively, may synthesize substantially longer products than oligonucleotide primers.[14] Forms a hexadecamer with nsp7 (8 subunits of each) that may participate in viral replication by acting as a primase. Alternatively, may synthesize substantially longer products than oligonucleotide primers.[15] May participate in viral replication by acting as a ssRNA-binding protein.[16] Plays a pivotal role in viral transcription by stimulating both nsp14 3'-5' exoribonuclease and nsp16 2'-O-methyltransferase activities. Therefore plays an essential role in viral mRNAs cap methylation.[17] Responsible for replication and transcription of the viral RNA genome.[18] Multi-functional protein with a zinc-binding domain in N-terminus displaying RNA and DNA duplex-unwinding activities with 5' to 3' polarity. Activity of helicase is dependent on magnesium.[19] [20] Enzyme possessing two different activities: an exoribonuclease activity acting on both ssRNA and dsRNA in a 3' to 5' direction and a N7-guanine methyltransferase activity (PubMed:16549795, PubMed:20421945, PubMed:22635272). Acts as a proofreading exoribonuclease for RNA replication, thereby lowering The sensitivity of the virus to RNA mutagens (PubMed:23966862, PubMed:29511076, PubMed:21593585).[21] [22] [23] [24] [25] [26] Mn(2+)-dependent, uridylate-specific enzyme, which leaves 2'-3'-cyclic phosphates 5' to the cleaved bond. Methyltransferase that mediates mRNA cap 2'-O-ribose methylation to the 5'-cap structure of viral mRNAs. N7-methyl guanosine cap is a prerequisite for binding of nsp16. Therefore plays an essential role in viral mRNAs cap methylation which is essential to evade immune system.[27] [28] Publication Abstract from PubMedThe design and evaluation of a novel decahydroisoquinolin scaffold as an inhibitor for severe acute respiratory syndrome (SARS) chymotrypsin-like protease (3CL(pro)) are described. Focusing on hydrophobic interactions at the S2 site, the decahydroisoquinolin scaffold was designed by connecting the P2 site cyclohexyl group of the substrate-based inhibitor to the main-chain at the alpha-nitrogen atom of the P2 position via a methylene linker. Starting from a cyclohexene enantiomer obtained by salt resolution, trans-decahydroisoquinolin derivatives were synthesized. All decahydroisoquinolin inhibitors synthesized showed moderate but clear inhibitory activities for SARS 3CL(pro), which confirmed the fused ring structure of the decahydroisoquinolin functions as a novel scaffold for SARS 3CL(pro) inhibitor. X-ray crystallographic analyses of the SARS 3CL(pro) in a complex with the decahydroisoquinolin inhibitor revealed the expected interactions at the S1 and S2 sites, as well as additional interactions at the N-substituent of the inhibitor. Fused-ring structure of decahydroisoquinolin as a novel scaffold for SARS 3CL protease inhibitors.,Shimamoto Y, Hattori Y, Kobayashi K, Teruya K, Sanjoh A, Nakagawa A, Yamashita E, Akaji K Bioorg Med Chem. 2015 Feb 15;23(4):876-90. doi: 10.1016/j.bmc.2014.12.028. Epub, 2014 Dec 20. PMID:25614110[29] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|