Sandbox Reserved 1767: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 24: Line 24:


=== MRAS ===
=== MRAS ===
MRAS localized the SHOC2 complex to the cell membrane by its C-terminus end. In its <scene name='95/952694/Cell_membrane/2'>Cell Membrane Bound RAS Model</scene>, there is a modified chain that allows it to bind to the cell membrane.<ref name="Liau">PMID: 35768504</ref> Normally, MRAS does not have the chain and it is only added after the modification. For MRas to bind, the SHOC-2 complex must be in the GTP bound state. When GDP is bound, there is a steric clash between Switch 1 and PP1C, so interaction with MRAS is not possible. Additionally, the surface of MRAS that is buried in the complex overlaps the surfaces used to engage RAF. It requires two MRAS interactions to activate a single RAF molecule.  
MRAS localized the SHOC2 complex to the cell membrane by its C-terminus end. In its <scene name='95/952694/Cell_membrane/3'>Cell Membrane Bound RAS Model</scene>, there is a modified chain that allows it to bind to the cell membrane.<ref name="Liau">PMID: 35768504</ref> Normally, MRAS does not have the chain and it is only added after the modification. For MRas to bind, the SHOC-2 complex must be in the GTP bound state. When GDP is bound, there is a steric clash between Switch 1 and PP1C, so interaction with MRAS is not possible. Additionally, the surface of MRAS that is buried in the complex overlaps the surfaces used to engage RAF. It requires two MRAS interactions to activate a single RAF molecule.  





Revision as of 20:23, 6 April 2023

This Sandbox is Reserved from February 27 through August 31, 2023 for use in the course CH462 Biochemistry II taught by R. Jeremy Johnson at the Butler University, Indianapolis, USA. This reservation includes Sandbox Reserved 1765 through Sandbox Reserved 1795.
To get started:
  • Click the edit this page tab at the top. Save the page after each step, then edit it again.
  • show the Scene authoring tools, create a molecular scene, and save it. Copy the green link into the page.
  • Add a description of your scene. Use the buttons above the wikitext box for bold, italics, links, headlines, etc.

More help: Help:Editing

SHOC2-PP1C-MRASSHOC2-PP1C-MRAS


Introduction

, also known as the SMP complex, is a 3-subunit complex essential for cell proliferation and the survival of many cancers and Rasopathies. When the subunits come together, it plays a key role in the activation of the Ras-Raf pathway and signaling cascade, which drives cell proliferation.[1] Each subunit of the complex has an individual structure which correlates with its function. SHOC2 has a crescent shape in order to enhance substrate interactions and interactions between the subunits, while PP1C holds the catalytic active site and, the C-terminus of MRAS localizes the complex to the cell membrane. Mutations in one or multiple of these subunits leads to over-activation of the signaling pathway, leading to cancer and developmental disorders called RASopathies. The signaling cascade is kept from over-activating by being held in an auto-inhibited conformation. The SMP complex is responsible for removing this auto-inhibited conformation, allowing for Raf to bind to Ras. Mutations in the subunits can lead to more frequent complex formation, ultimately leading to more, often uncontrolled, cell proliferation.[2] SHOC2-PP1C-MRAS is being studied as a possible treatment target for many types of cancers.

In all images and animations, SHOC2 will be shown as cyan blue, MRAS as lime, and PP1C as violet. Other important components involved in the function of the SMP complex include the 14-3-3 dimer and Raf, which will be shown in salmon and slate-blue, respectively.

Significance

Cell Proliferation

The Ras-Raf signaling cascade is fundamental for cell growth and survival. When a membrane bound GTPase is activated by extracellular growth proteins, it binds to a GTP molecule which then activates Raf and the signaling cascade. However, Raf is typically kept in an auto-inhibited form. When MRAS is GTP-bound rather than GDP-bound, it triggers the formation of the SMP complex. The active site of PP1C, when in complex, is responsible for removing the residue that causes steric clash, and therefore, auto-inhibition. Extracellular growth factors trigger both formation of the SMP complex and Ras-Raf interaction through the binding of GTP to a Ras-protein, however, the SMP complex must remove the auto-inhibition before Ras and Raf can interact. Since SHOC2-PP1C-MRAS plays such a crucial role in the activation of the signaling cascade, many scientists say that cell proliferation is regulated by the SMP complex rather than the Ras-Raf interaction.


Cancer and Rasopathies

Mutations in any of the 3 subunits of SHOC2-PP1C-MRAS can lead to cancer or a developmental disability called Rasopathy. Mutations occur at the protein-protein interaction surfaces, leading to more stability of the complex as well as increased interaction energy of SHOC2 with PP1C and/or MRAS.[2] For SHOC2 and PP1C, the mutations lead to amino acid changes on the interaction surfaces, causing a higher affinity for binding.[3] Mutations to MRAS lead to consistent GTP-loading, causing an increase in the formation of the SMP complex. As a result, there is consistent activation of the cell-proliferation pathway even without the presence of the external growth factors. Because the system is no longer regulated, cells proliferate regardless of external signals, leading to cancer and/or RASopathies. Furthermore, some mutations in PP1C lead to increased active site enzymatic activity, also leading to increased cell growth.


Structure of Subunits

SHOC2

SHOC2 is essential for complex formation, however SHOC2 only undergoes a 6° when MRAS and PP1C bind.[1] SHOC2 is just the place where MRAS and PP1C come together. SHOC2 and PP1C first engage in binding with each other, and MRAS-GTP binds, stabilizing SHOC2 and PP1C binding, and fully forming the SHOC2-MRAS-PP1C holophophatase complex. [2]

PP1C

SHOC2 has a RVxF binding motif that interacts with the PP1C RVxF binding site. The N-terminal loop of SHOC2 interacts with the RVxF binding site of PP1C, highlighting the structure and function connection of the complex. RVxF allows PP1C substrates to bind, whereas RAF has the RVxF motif, so it can bind to the hydrophobic region of SHOC2, allowing for greater specificity. Additionally, PP1C and SHOC2 do not change conformationally upon the binding of GTP, but rather they are inactive when RAS is bound to GDP due to steric strain. with or without binding to the SMP complex as PP1C retains its enzymatic function independently.[4].

MRAS

MRAS localized the SHOC2 complex to the cell membrane by its C-terminus end. In its , there is a modified chain that allows it to bind to the cell membrane.[4] Normally, MRAS does not have the chain and it is only added after the modification. For MRas to bind, the SHOC-2 complex must be in the GTP bound state. When GDP is bound, there is a steric clash between Switch 1 and PP1C, so interaction with MRAS is not possible. Additionally, the surface of MRAS that is buried in the complex overlaps the surfaces used to engage RAF. It requires two MRAS interactions to activate a single RAF molecule.


Autoinhibited Confirmation

The first step of the signaling cascade is the dephosphorylation of Raf at Ser259. In the , Raf interacts with a 14-3-3 dimer due to the phosphate group present on Ser259. This interaction with 14-3-3 restrics Raf to the cytoplasm and inhibits Raf from binding with Ras due to steric clash. When GTP binds to MRAS, this triggers the SMP complex to form. Once the complex is formed, PP1C is brought into close proximity of Ras, leading to the dephosphorylation of Ser259. Once dephosphorylated, Raf is in the , allowing for the interaction of Ras and Raf, and the initiation of the signaling cascade.[5]

Signaling Cascade and Conformational Changes

Switch I and Switch II

SHOC2-PP1C-MRAS is a regulator of a cell proliferation pathway. Mutations in cell proliferation pathways are responsible for 25% of all cancers 1. If this cell proliferation pathway goes unmediated, rapid cell growth and division will occur; the leading cause of cancers is mutations in this pathway. [3] Mechanistic Overview and Signaling Cascade shows the pathway SHOC2-PP1C-MRAS is part of. It is a receptor tyrosine kinase pathway.[2] When MRAS is bound to GDP, the complex is not assembled. SHOC2, PP1C, and MRAS all exist as separate monomers. The Raf domain contains a kinase domain (KD), Ras binding domain (RBD), a C-terminal phosphoserine (CTpS), a N-terminal phosphorylated serine (NTpS), and a 14-3-3 protein dimer, restricting RAF to the cytoplasm. In the activated pathway, MRAS is bound to GTP, and the SMP complex is assembled. PP1C is now in contact with the NTpS, allowing it to become dephosphorylated. [3] This dephosphorylation causes the dimerization of two Raf proteins via their kinase domains as well as a conformational change. This conformation change causes the phosphorylation of other residues. Eventually, this leads to the unbinding of GDP from MRAS and the binding of GTP to MRAS, causing a shift from the to The Switch I region is made up of residues 42-48 of the MRAS domain.[2] These residues are crucial for the binding of MRAS, SHOC2, and PP1C. When GDP is bound to the MRAS domain, it is in the Since the gamma P is not bound to GDP, there are no hydrogen bond interactions with the oxygens of the phosphate group- hence the open conformation. When GTP is bound to MRAS, it is in the The closed conformation allows for the binding of SHOC2 and PP1C. The open conformation of MRAS sterically clashes with the binding site of SHOC2, which is why the complex is not assembled when GDP is bound. [2].

Figure 1. Residues Interacting at SWI and SWII at subunits SHOC2 and PP1C.[4].

Switch I (SWI) and Switch II (SWII) are located between the SHOC2 and MRas subunits. When GTP is hydrolyzed to GDP, Switch I and Switch II relax, in the relaxed state SHOC2 cannot bind to MRas. Two Residues from MRas interact with the gamma phosphate on GTP, changing the complex to the closed confirmation. When GTP is bound to , it triggers the assembly of the SHOC2 Complex. When SWI is in its open confirmation, PP1C cannot bind with MRas due to the steric clashes, but when GTP binds and SWI is in its closed confirmation, PP1C can bind without hinderance. In a mutated complex, other RAS proteins can replace MRas making cell proliferation more likely. SHOC2-PP1C-MRas may be used as a therapeutic target for cancer treatments through changing the confirmation of the .

Ras/Raf

Figure 2: MRAS binding sites with SHOC2, PP1C, and RAF.[4].

Ras proteins are GTP-dependent intracellular switches that are anchored to the plasma membrane, which activate RAF kinases through direct binding and membrane recruitment, resulting in RAF dimerization and pathway activation. [4]. Ras has a hydrophobic fatty acid tail, keeping it anchored to the membrane. There are no known membrane interacting regions on SHOC2 and PP1C, meaning MRAS likely recruits them to the membrane. As seen in these figures, there is a significant amount of steric overlap with MRAS binding site with PP1C and SHOC2 and Raf. Hence, multiple Ras proteins are required for further activation of the receptor tyrosine kinase pathway. One Ras molecule is needed to recruit SHOC2 and PP1C to the membrane, and one Ras molecule is needed activate Raf. The ability of Ras-GTP to cluster at the membrane is a crucial capability for this protein complex. This anchoring is possible due to the presence of a hydrophobic fatty acid tail on Ras. One RAS molecule is needed to recruit SHOC2 and PP1C to the membrane, and one RAS molecule is needed activate Raf.


Structure of Active Site

3-Metal Ion Catalysis

The of the SHOC2-PP1C-MRAS complex resides in the PP1C subunit.[6] The role of PP1C is to dephosphorylate SER259 of Raf so that the signaling cascade can start. The active site is unchanged upon the binding of the complex, however, SHOC2 and MRAS aid in the specificity of the enzymatic activity as PP1C is able to dephosphorylate many different targets on its own, with almost 100 PP1C targets found.[5] The full mechanism for the catalytic activity is unknown, however, there are 3 metal ions present (2-Mg2+ and 1-Cl-) to stabilize the waters present in the active site. Additionally, the substrate binds through hydrogen bonds with the main chain and side chain atoms of the catalytic residues. Mutations in the active site lead to increased activity, causing the Ras/Raf signaling cascade to be triggered more frequently.[6]

Hydrophobic Binding Site

PP1C has a

adjacent to its active site.[6] The majority of PP1C targets are able to bind through a specific motif that is recognized by the hydrophobic groove. In the Ras/Raf signaling cascade, the region of Raf that is C-terminal to the phosphate group binds to the hydrophobic groove, and the remaining residues bind to the hydrophobic region of SHOC2. This binding to SHOC2 is what allows the SMP complex to be more specific than PP1C on its own.[6] PP1C also has a singular cysteine (C291) present in the hydrophobic binding site in order to provide further stability to the substrate-protein interaction.

Future Directions

The depletion of SHOC2 is being studied as a target for cancer and Rasopathy treatment.[2] Although MRAS is the protein that triggers the formation of the complex, SHOC2 is the anchoring location for both MRAS and PP1C. Without SHOC2, the complex would not form and Ser259 would not be dephosphorylated. MRAS could be triggered and moved towards the cell membrane, but no complex will form and Raf will remain in the auto-inhibited form. Additionally, there are other RAS proteins that can form an SMP-like complex. If MRAS were to be depleted, other RAS proteins could step in place of MRAS. PP1C is able to dephosphorylated other proteins on it's own, therefore it is not a good target as depletion of PP1C could lead to other issues. Depletion of SHOC2 is the most promising treatment that has been researched. There is also possibility that changing the confirmation of RAS Switch II could lead to decreased cell proliferation.


SHOC2-MRAS-PP1C Holophosphatase Complex

Drag the structure with the mouse to rotate

Protopedia ResourcesProtopedia Resources

ReferencesReferences

  1. 1.0 1.1 Hauseman ZJ, Fodor M, Dhembi A, Viscomi J, Egli D, Bleu M, Katz S, Park E, Jang DM, Porter KA, Meili F, Guo H, Kerr G, Molle S, Velez-Vega C, Beyer KS, Galli GG, Maira SM, Stams T, Clark K, Eck MJ, Tordella L, Thoma CR, King DA. Structure of the MRAS-SHOC2-PP1C phosphatase complex. Nature. 2022 Jul 13. pii: 10.1038/s41586-022-05086-1. doi:, 10.1038/s41586-022-05086-1. PMID:35830882 doi:http://dx.doi.org/10.1038/s41586-022-05086-1
  2. 2.0 2.1 2.2 2.3 2.4 2.5 2.6 Kwon JJ, Hajian B, Bian Y, Young LC, Amor AJ, Fuller JR, Fraley CV, Sykes AM, So J, Pan J, Baker L, Lee SJ, Wheeler DB, Mayhew DL, Persky NS, Yang X, Root DE, Barsotti AM, Stamford AW, Perry CK, Burgin A, McCormick F, Lemke CT, Hahn WC, Aguirre AJ. Structure-function analysis of the SHOC2-MRAS-PP1C holophosphatase complex. Nature. 2022 Jul 13. pii: 10.1038/s41586-022-04928-2. doi:, 10.1038/s41586-022-04928-2. PMID:35831509 doi:http://dx.doi.org/10.1038/s41586-022-04928-2
  3. 3.0 3.1 3.2 Lavoie H, Therrien M. Structural keys unlock RAS-MAPK cellular signalling pathway. Nature. 2022 Sep;609(7926):248-249. PMID:35970881 doi:10.1038/d41586-022-02189-7
  4. 4.0 4.1 4.2 4.3 4.4 Liau NPD, Johnson MC, Izadi S, Gerosa L, Hammel M, Bruning JM, Wendorff TJ, Phung W, Hymowitz SG, Sudhamsu J. Structural basis for SHOC2 modulation of RAS signalling. Nature. 2022 Jun 29. pii: 10.1038/s41586-022-04838-3. doi:, 10.1038/s41586-022-04838-3. PMID:35768504 doi:http://dx.doi.org/10.1038/s41586-022-04838-3
  5. 5.0 5.1 Young LC, Hartig N, Boned Del Río I, Sari S, Ringham-Terry B, Wainwright JR, Jones GG, McCormick F, Rodriguez-Viciana P. SHOC2-MRAS-PP1 complex positively regulates RAF activity and contributes to Noonan syndrome pathogenesis. Proc Natl Acad Sci U S A. 2018 Nov 6;115(45):E10576-E10585. PMID:30348783 doi:10.1073/pnas.1720352115
  6. 6.0 6.1 6.2 6.3 Hurley TD, Yang J, Zhang L, Goodwin KD, Zou Q, Cortese M, Dunker AK, DePaoli-Roach AA. Structural basis for regulation of protein phosphatase 1 by inhibitor-2. J Biol Chem. 2007 Sep 28;282(39):28874-83. Epub 2007 Jul 18. PMID:17636256 doi:http://dx.doi.org/10.1074/jbc.M703472200

1. Hauseman ZJ, Fodor M, Dhembi A, Viscomi J, Egli D, Bleu M, Katz S, Park E, Jang DM, Porter KA, Meili F, Guo H, Kerr G, Mollé S, Velez-Vega C, Beyer KS, Galli GG, Maira SM, Stams T, Clark K, Eck MJ, Tordella L, Thoma CR, King DA. Structure of the MRAS-SHOC2-PP1C phosphatase complex. Nature. 2022 Sep;609(7926):416-423. doi: 10.1038/s41586-022-05086-1. Epub 2022 Jul 13. PMID: 35830882; PMCID: PMC9452295.[1].

2. Hurley TD, Yang J, Zhang L, Goodwin KD, Zou Q, Cortese M, Dunker AK, DePaoli-Roach AA. Structural basis for regulation of protein phosphatase 1 by inhibitor-2. J Biol Chem. 2007 Sep 28;282(39):28874-28883. doi: 10.1074/jbc.M703472200. Epub 2007 Jul 18. PMID: 17636256.[2].

3. Kwon JJ, Hajian B, Bian Y, Young LC, Amor AJ, Fuller JR, Fraley CV, Sykes AM, So J, Pan J, Baker L, Lee SJ, Wheeler DB, Mayhew DL, Persky NS, Yang X, Root DE, Barsotti AM, Stamford AW, Perry CK, Burgin A, McCormick F, Lemke CT, Hahn WC, Aguirre AJ. Structure-function analysis of the SHOC2-MRAS-PP1C holophosphatase complex. Nature. 2022 Sep;609(7926):408-415. doi: 10.1038/s41586-022-04928-2. Epub 2022 Jul 13. PMID: 35831509; PMCID: PMC9694338.[3].

4. ​Liau NPD, Johnson MC, Izadi S, Gerosa L, Hammel M, Bruning JM, Wendorff TJ, Phung W, Hymowitz SG, Sudhamsu J. Structural basis for SHOC2 modulation of RAS signalling. Nature. 2022 Sep;609(7926):400-407. doi: 10.1038/s41586-022-04838-3. Epub 2022 Jun 29. PMID: 35768504; PMCID: PMC9452301.[4].

5. Lavoie H, Therrien M. Structural keys unlock RAS-MAPK cellular signalling pathway. Nature. 2022 Sep;609(7926):248-249. doi: 10.1038/d41586-022-02189-7. PMID: 35970881.​[5].

6. Young LC, Hartig N, Boned Del Río I, Sari S, Ringham-Terry B, Wainwright JR, Jones GG, McCormick F, Rodriguez-Viciana P. SHOC2-MRAS-PP1 complex positively regulates RAF activity and contributes to Noonan syndrome pathogenesis. Proc Natl Acad Sci U S A. 2018 Nov 6;115(45):E10576-E10585. doi: 10.1073/pnas.1720352115. Epub 2018 Oct 22. PMID: 30348783; PMCID: PMC6233131.​​[6].

Student ContributorsStudent Contributors

- Sloan August

- Rosa Trippel

- Kayla Wilhoite

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA, Jaime Prilusky, Kayla Wilhoite, Sloan August, Rosa Trippel, R. Jeremy Johnson