4lru: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Crystal structure of glyoxalase III (Orf 19.251) from Candida albicans== | ==Crystal structure of glyoxalase III (Orf 19.251) from Candida albicans== | ||
<StructureSection load='4lru' size='340' side='right' caption='[[4lru]], [[Resolution|resolution]] 1.60Å' scene=''> | <StructureSection load='4lru' size='340' side='right'caption='[[4lru]], [[Resolution|resolution]] 1.60Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[4lru]] is a 1 chain structure with sequence from [ | <table><tr><td colspan='2'>[[4lru]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Candida_albicans_SC5314 Candida albicans SC5314]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4LRU OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4LRU FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ACT:ACETATE+ION'>ACT</scene>, <scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ACT:ACETATE+ION'>ACT</scene>, <scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4lru FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4lru OCA], [https://pdbe.org/4lru PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4lru RCSB], [https://www.ebi.ac.uk/pdbsum/4lru PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4lru ProSAT]</span></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | |||
</table> | </table> | ||
== Function == | |||
[https://www.uniprot.org/uniprot/HSP31_CANAL HSP31_CANAL] Catalyzes the conversion of methylglyoxal (MG) to D-lactate in a single glutathione (GSH)-independent step. Selective for MG, does not use glyoxal as substrate. Plays a role in detoxifying endogenously produced MG, particularly when glycerol is the principal carbon source (PubMed:24302734). Important for viability in stationary phase (By similarity).[UniProtKB:Q04432]<ref>PMID:24302734</ref> | |||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
== Publication Abstract from PubMed == | == Publication Abstract from PubMed == | ||
Line 20: | Line 20: | ||
==See Also== | ==See Also== | ||
*[[Glyoxalase|Glyoxalase]] | *[[Glyoxalase 3D structures|Glyoxalase 3D structures]] | ||
== References == | == References == | ||
<references/> | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: | [[Category: Candida albicans SC5314]] | ||
[[Category: | [[Category: Large Structures]] | ||
[[Category: Hasim | [[Category: Hasim S]] | ||
[[Category: Hussin | [[Category: Hussin NA]] | ||
[[Category: Nickerson | [[Category: Nickerson KW]] | ||
[[Category: Wilson | [[Category: Wilson MA]] | ||
Revision as of 14:23, 14 December 2022
Crystal structure of glyoxalase III (Orf 19.251) from Candida albicansCrystal structure of glyoxalase III (Orf 19.251) from Candida albicans
Structural highlights
FunctionHSP31_CANAL Catalyzes the conversion of methylglyoxal (MG) to D-lactate in a single glutathione (GSH)-independent step. Selective for MG, does not use glyoxal as substrate. Plays a role in detoxifying endogenously produced MG, particularly when glycerol is the principal carbon source (PubMed:24302734). Important for viability in stationary phase (By similarity).[UniProtKB:Q04432][1] Publication Abstract from PubMedMethylglyoxal is a cytotoxic reactive carbonyl compound produced by central metabolism. Dedicated glyoxalases convert methylglyoxal to D-lactate using multiple catalytic strategies. In this study, the DJ-1 superfamily member orf 19.251/GLX3 from Candida albicans is shown to possess glyoxalase activity, making this the first demonstrated glutathione-independent glyoxalase in fungi. The crystal structure of Glx3p indicates that the protein is a monomer containing the catalytic triad Cys136-His137-Glu168. Purified Glx3p has an in vitro methylglyoxalase activity (Km = 5.5 mM and kcat = 7.8 s-1) that is significantly greater than that of more distantly related members of the DJ-1 superfamily. A close Glx3p homolog from Saccharomyces cerevisiae (YDR533C/Hsp31) also has glyoxalase activity, suggesting that fungal members of the Hsp31 clade of the DJ-1 superfamily are all probable glutathione-independent glyoxalases. A homozygous glx3 null mutant in C. albicans strain SC5314 displays greater sensitivity to millimolar levels of exogenous methylglyoxal, elevated levels of intracellular methylglyoxal, and carbon source-dependent growth defects, especially when grown on glycerol. These phenotypic defects are complemented by restoration of the wild-type GLX3 locus. The growth defect of Glx3-deficient cells in glycerol is also partially complemented by added inorganic phosphate, which is not observed for wild-type or glucose-grown cells. Therefore, C. albicans Glx3 and its fungal homologs are physiologically relevant glutathione-independent glyoxalases that are not redundant with the previously characterized glutathione-dependent GLO1/GLO2 system. In addition to its role in detoxifying glyoxals, Glx3 and its close homologs may have other important roles in stress response. A Glutathione-Independent Glyoxalase of the DJ-1 Superfamily Plays an Important Role in Managing Metabolically Generated Methylglyoxal in Candida albicans.,Hasim S, Hussin NA, Alomar F, Bidasee KR, Nickerson KW, Wilson MA J Biol Chem. 2013 Dec 3. PMID:24302734[2] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|