Glycolysis Enzymes: Difference between revisions
No edit summary |
No edit summary |
||
Line 57: | Line 57: | ||
==The fates of pyruvate== | ==The fates of pyruvate== | ||
Under oxidative conditions, pyruvate continues to be metabolized through the [[The_Citric_Acid_Cycle|tricarboxylic acid cycle]]. While energy can be obtained under anaerobic conditions from glycolysis alone, the accumulation of pyruvate and NADH limits this. There are two main strategies for dealing with this problem. | Under oxidative conditions, pyruvate continues to be metabolized through the [[The_Citric_Acid_Cycle|tricarboxylic acid cycle]]. While energy can be obtained under anaerobic conditions from glycolysis alone, the accumulation of pyruvate and NADH limits this. There are two main strategies for dealing with this problem. In most cells, [[Lactate_Dehydrogenase|lactate dehydrogenase]] converts the <scene name='39/392339/Cv1/11'>pyruvate</scene> and NADH to <scene name='39/392339/Cv1/10'>lactate</scene>, dealing with both problems at once and regenerating NAD+ so glycolysis can continue. <scene name='Lactate_Dehydrogenase/Cv/4'>Conversion of pyruvate into lactate acid</scene>. Fortunately for us, some yeast cells do something else--leading to the generation of ethanol. First, [[Pyruvate decarboxylase|pyruvate decarboxylase]] catalyzes the converstion from pyruvate to acetaldehyde, releasing carbon dioxide. Next, aldehyde dehydogenase reduces the acetaldehyde to ethanol, converting NADH to NAD+ in the process. | ||
==Additional Resources== | ==Additional Resources== |