4ibb: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Ebola virus VP35 bound to small molecule== | ==Ebola virus VP35 bound to small molecule== | ||
<StructureSection load='4ibb' size='340' side='right' caption='[[4ibb]], [[Resolution|resolution]] 1.75Å' scene=''> | <StructureSection load='4ibb' size='340' side='right'caption='[[4ibb]], [[Resolution|resolution]] 1.75Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[4ibb]] is a 2 chain structure with sequence from [ | <table><tr><td colspan='2'>[[4ibb]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Ebola_virus_-_Mayinga,_Zaire,_1976 Ebola virus - Mayinga, Zaire, 1976]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4IBB OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4IBB FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=1DK:{4-[(5R)-3-HYDROXY-2-OXO-4-(THIOPHEN-2-YLCARBONYL)-5-(2,4,5-TRIMETHYLPHENYL)-2,5-DIHYDRO-1H-PYRROL-1-YL]PHENYL}ACETIC+ACID'>1DK</scene> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=1DK:{4-[(5R)-3-HYDROXY-2-OXO-4-(THIOPHEN-2-YLCARBONYL)-5-(2,4,5-TRIMETHYLPHENYL)-2,5-DIHYDRO-1H-PYRROL-1-YL]PHENYL}ACETIC+ACID'>1DK</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4ibb FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4ibb OCA], [https://pdbe.org/4ibb PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4ibb RCSB], [https://www.ebi.ac.uk/pdbsum/4ibb PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4ibb ProSAT]</span></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | |||
</table> | </table> | ||
== Function == | == Function == | ||
[ | [https://www.uniprot.org/uniprot/VP35_EBOZM VP35_EBOZM] Acsts as a polymerase cofactor in the RNA polymerase transcription and replication complex. Prevents establishment of cellular antiviral state by blocking virus-induced phosphorylation and activation of interferon regulatory factor 3 (IRF3), a transcription factor critical for the induction of interferons alpha and beta. The mechanism by which this blockage occurs remains incompletely defined, a hypothesis suggests that VP35 dsRNA-binding activity prevents activation of IRF3 by sequestering dsRNA. Also inhibits the antiviral effect mediated by the interferon-induced, double-stranded RNA-activated protein kinase EIF2AK2/PKR.<ref>PMID:9971816</ref> <ref>PMID:11027311</ref> <ref>PMID:12829834</ref> <ref>PMID:16495261</ref> <ref>PMID:17065211</ref> | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
== Publication Abstract from PubMed == | == Publication Abstract from PubMed == | ||
Line 24: | Line 22: | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: | [[Category: Ebola virus - Mayinga, Zaire, 1976]] | ||
[[Category: | [[Category: Large Structures]] | ||
[[Category: | [[Category: Amarasinghe GK]] | ||
[[Category: | [[Category: Binning JM]] | ||
[[Category: | [[Category: Borek DM]] | ||
[[Category: | [[Category: Brown CS]] | ||
[[Category: Leung | [[Category: Leung DW]] | ||
[[Category: Otwinowski | [[Category: Otwinowski Z]] | ||
[[Category: Peterson | [[Category: Peterson DS]] | ||
[[Category: Ramanan | [[Category: Ramanan P]] | ||
[[Category: Stubbs | [[Category: Stubbs AJ]] | ||
[[Category: Xu | [[Category: Xu W]] | ||
Revision as of 11:55, 9 November 2022
Ebola virus VP35 bound to small moleculeEbola virus VP35 bound to small molecule
Structural highlights
FunctionVP35_EBOZM Acsts as a polymerase cofactor in the RNA polymerase transcription and replication complex. Prevents establishment of cellular antiviral state by blocking virus-induced phosphorylation and activation of interferon regulatory factor 3 (IRF3), a transcription factor critical for the induction of interferons alpha and beta. The mechanism by which this blockage occurs remains incompletely defined, a hypothesis suggests that VP35 dsRNA-binding activity prevents activation of IRF3 by sequestering dsRNA. Also inhibits the antiviral effect mediated by the interferon-induced, double-stranded RNA-activated protein kinase EIF2AK2/PKR.[1] [2] [3] [4] [5] Publication Abstract from PubMedThe Ebola virus (EBOV) genome only encodes a single viral polypeptide with enzymatic activity, the viral large (L) RNA-dependent RNA polymerase protein. However, currently, there is limited information about the L protein, which has hampered the development of antivirals. Therefore, antifiloviral therapeutic efforts must include additional targets such as protein-protein interfaces. Viral protein 35 (VP35) is multifunctional and plays important roles in viral pathogenesis, including viral mRNA synthesis and replication of the negative-sense RNA viral genome. Previous studies revealed that mutation of key basic residues within the VP35 interferon inhibitory domain (IID) results in significant EBOV attenuation, both in vitro and in vivo. In the current study, we use an experimental pipeline that includes structure-based in silico screening and biochemical and structural characterization, along with medicinal chemistry, to identify and characterize small molecules that target a binding pocket within VP35. NMR mapping experiments and high-resolution x-ray crystal structures show that select small molecules bind to a region of VP35 IID that is important for replication complex formation through interactions with the viral nucleoprotein (NP). We also tested select compounds for their ability to inhibit VP35 IID-NP interactions in vitro as well as VP35 function in a minigenome assay and EBOV replication. These results confirm the ability of compounds identified in this study to inhibit VP35-NP interactions in vitro and to impair viral replication in cell-based assays. These studies provide an initial framework to guide development of antifiloviral compounds against filoviral VP35 proteins. In Silico Derived Small Molecules Bind the Filovirus VP35 Protein and Inhibit Its Polymerase Cofactor Activity.,Brown CS, Lee MS, Leung DW, Wang T, Xu W, Luthra P, Anantpadma M, Shabman RS, Melito LM, Macmillan KS, Borek DM, Otwinowski Z, Ramanan P, Stubbs AJ, Peterson DS, Binning JM, Tonelli M, Olson MA, Davey R, Ready JM, Basler CF, Amarasinghe GK J Mol Biol. 2014 Feb 1. pii: S0022-2836(14)00048-5. doi:, 10.1016/j.jmb.2014.01.010. PMID:24495995[6] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|