7vvh: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Crystal Structure of the Kv7.1 C-terminal Domain in Complex with Calmodulin disease mutation E140G== | |||
<StructureSection load='7vvh' size='340' side='right'caption='[[7vvh]], [[Resolution|resolution]] 2.30Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[7vvh]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7VVH OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7VVH FirstGlance]. <br> | |||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene></td></tr> | |||
[[Category: | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7vvh FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7vvh OCA], [https://pdbe.org/7vvh PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7vvh RCSB], [https://www.ebi.ac.uk/pdbsum/7vvh PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7vvh ProSAT]</span></td></tr> | ||
</table> | |||
== Disease == | |||
[https://www.uniprot.org/uniprot/KCNQ1_HUMAN KCNQ1_HUMAN] Defects in KCNQ1 are the cause of long QT syndrome type 1 (LQT1) [MIM:[https://omim.org/entry/192500 192500]; also known as Romano-Ward syndrome (RWS). Long QT syndromes are heart disorders characterized by a prolonged QT interval on the ECG and polymorphic ventricular arrhythmias. They cause syncope and sudden death in response to exercise or emotional stress. LQT1 inheritance is an autosomal dominant.<ref>PMID:18165683</ref> <ref>PMID:9799083</ref> <ref>PMID:10024302</ref> <ref>PMID:8528244</ref> <ref>PMID:9323054</ref> <ref>PMID:8872472</ref> <ref>PMID:8818942</ref> [:]<ref>PMID:9024139</ref> <ref>PMID:9386136</ref> <ref>PMID:9272155</ref> <ref>PMID:9302275</ref> <ref>PMID:9570196</ref> <ref>PMID:9641694</ref> <ref>PMID:9693036</ref> <ref>PMID:9482580</ref> <ref>PMID:9702906</ref> <ref>PMID:10367071</ref> <ref>PMID:9927399</ref> <ref>PMID:10482963</ref> <ref>PMID:10220144</ref> <ref>PMID:10220146</ref> <ref>PMID:10409658</ref> <ref>PMID:10728423</ref> <ref>PMID:10973849</ref> <ref>PMID:15840476</ref> <ref>PMID:19540844</ref> <ref>PMID:21241800</ref> Defects in KCNQ1 are the cause of Jervell and Lange-Nielsen syndrome type 1 (JLNS1) [MIM:[https://omim.org/entry/220400 220400]. JLNS1 is an autosomal recessive disorder characterized by congenital deafness, prolongation of the QT interval, syncopal attacks due to ventricular arrhythmias, and a high risk of sudden death.<ref>PMID:10728423</ref> <ref>PMID:9781056</ref> <ref>PMID:10090886</ref> Defects in KCNQ1 are the cause of familial atrial fibrillation type 3 (ATFB3) [MIM:[https://omim.org/entry/607554 607554]. Atrial fibrillation is a common disorder of cardiac rhythm that is hereditary in a small subgroup of patients. It is characterized by disorganized atrial electrical activity and ineffective atrial contraction promoting blood stasis in the atria and reduces ventricular filling. It can result in palpitations, syncope, thromboembolic stroke, and congestive heart failure.<ref>PMID:12522251</ref> Defects in KCNQ1 are the cause of short QT syndrome type 2 (SQT2) [MIM:[https://omim.org/entry/609621 609621]. Short QT syndromes are heart disorders characterized by idiopathic persistently and uniformly short QT interval on ECG in the absence of structural heart disease in affected individuals. They cause syncope and sudden death.<ref>PMID:15159330</ref> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/KCNQ1_HUMAN KCNQ1_HUMAN] Probably important in cardiac repolarization. Associates with KCNE1 (MinK) to form the I(Ks) cardiac potassium current. Elicits a rapidly activating, potassium-selective outward current. Muscarinic agonist oxotremorine-M strongly suppresses KCNQ1/KCNE1 current in CHO cells in which cloned KCNQ1/KCNE1 channels were coexpressed with M1 muscarinic receptors. May associate also with KCNE3 (MiRP2) to form the potassium channel that is important for cyclic AMP-stimulated intestinal secretion of chloride ions, which is reduced in cystic fibrosis and pathologically stimulated in cholera and other forms of secretory diarrhea. | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Homo sapiens]] | |||
[[Category: Large Structures]] | |||
[[Category: Chen L]] |