4d03: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 3: Line 3:
<StructureSection load='4d03' size='340' side='right'caption='[[4d03]], [[Resolution|resolution]] 1.81&Aring;' scene=''>
<StructureSection load='4d03' size='340' side='right'caption='[[4d03]], [[Resolution|resolution]] 1.81&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[4d03]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/"thermonospora_fusca"_henssen_1957 "thermonospora fusca" henssen 1957]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4D03 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4D03 FirstGlance]. <br>
<table><tr><td colspan='2'>[[4d03]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Thermobifida_fusca Thermobifida fusca]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4D03 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4D03 FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=FAD:FLAVIN-ADENINE+DINUCLEOTIDE'>FAD</scene>, <scene name='pdbligand=NAP:NADP+NICOTINAMIDE-ADENINE-DINUCLEOTIDE+PHOSPHATE'>NAP</scene>, <scene name='pdbligand=P6G:HEXAETHYLENE+GLYCOL'>P6G</scene></td></tr>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=FAD:FLAVIN-ADENINE+DINUCLEOTIDE'>FAD</scene>, <scene name='pdbligand=NAP:NADP+NICOTINAMIDE-ADENINE-DINUCLEOTIDE+PHOSPHATE'>NAP</scene>, <scene name='pdbligand=P6G:HEXAETHYLENE+GLYCOL'>P6G</scene></td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[4czz|4czz]], [[4d04|4d04]]</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4d03 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4d03 OCA], [https://pdbe.org/4d03 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4d03 RCSB], [https://www.ebi.ac.uk/pdbsum/4d03 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4d03 ProSAT]</span></td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Phenylacetone_monooxygenase Phenylacetone monooxygenase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.14.13.92 1.14.13.92] </span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4d03 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4d03 OCA], [http://pdbe.org/4d03 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4d03 RCSB], [http://www.ebi.ac.uk/pdbsum/4d03 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4d03 ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/PAMO_THEFY PAMO_THEFY]] Catalyzes a Baeyer-Villiger oxidation reaction, i.e. the insertion of an oxygen atom into a carbon-carbon bond adjacent to a carbonyl, which converts ketones to esters. Is most efficient with phenylacetone as substrate, leading to the formation of benzyl acetate. Can also oxidize other aromatic ketones (benzylacetone, alpha-methylphenylacetone and 4-hydroxyacetophenone), some aliphatic ketones (dodecan-2-one and bicyclohept-2-en-6-one) and sulfides (e.g. methyl 4-tolylsulfide).  
[[https://www.uniprot.org/uniprot/PAMO_THEFY PAMO_THEFY]] Catalyzes a Baeyer-Villiger oxidation reaction, i.e. the insertion of an oxygen atom into a carbon-carbon bond adjacent to a carbonyl, which converts ketones to esters. Is most efficient with phenylacetone as substrate, leading to the formation of benzyl acetate. Can also oxidize other aromatic ketones (benzylacetone, alpha-methylphenylacetone and 4-hydroxyacetophenone), some aliphatic ketones (dodecan-2-one and bicyclohept-2-en-6-one) and sulfides (e.g. methyl 4-tolylsulfide).
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
== Publication Abstract from PubMed ==
Line 22: Line 20:


==See Also==
==See Also==
*[[Monooxygenase|Monooxygenase]]
*[[Monooxygenase 3D structures|Monooxygenase 3D structures]]
== References ==
== References ==
<references/>
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Thermonospora fusca henssen 1957]]
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: Phenylacetone monooxygenase]]
[[Category: Thermobifida fusca]]
[[Category: Brondani, P B]]
[[Category: Brondani PB]]
[[Category: Dudek, H M]]
[[Category: Dudek HM]]
[[Category: Fraaije, M W]]
[[Category: Fraaije MW]]
[[Category: Martinoli, C]]
[[Category: Martinoli C]]
[[Category: Mattevi, A]]
[[Category: Mattevi A]]
[[Category: Biocatalysis]]
[[Category: Oxidoreductase]]

Revision as of 10:40, 14 September 2022

Structure of the Cys65Asp mutant of phenylacetone monooxygenase: oxidised stateStructure of the Cys65Asp mutant of phenylacetone monooxygenase: oxidised state

Structural highlights

4d03 is a 1 chain structure with sequence from Thermobifida fusca. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

[PAMO_THEFY] Catalyzes a Baeyer-Villiger oxidation reaction, i.e. the insertion of an oxygen atom into a carbon-carbon bond adjacent to a carbonyl, which converts ketones to esters. Is most efficient with phenylacetone as substrate, leading to the formation of benzyl acetate. Can also oxidize other aromatic ketones (benzylacetone, alpha-methylphenylacetone and 4-hydroxyacetophenone), some aliphatic ketones (dodecan-2-one and bicyclohept-2-en-6-one) and sulfides (e.g. methyl 4-tolylsulfide).

Publication Abstract from PubMed

By a targeted enzyme engineering approach, we were able to create an efficient NADPH oxidase from a monooxygenase. Intriguingly, replacement of only one specific single amino acid was sufficient for such a monooxygenase-to-oxidase switch-a complete transition in enzyme activity. Pre-steady-state kinetic analysis and elucidation of the crystal structure of the C65D PAMO mutant revealed that the mutation introduces small changes near the flavin cofactor, resulting in a rapid decay of the peroxyflavin intermediate. The engineered biocatalyst was shown to be a thermostable, solvent tolerant, and effective cofactor-regenerating biocatalyst. Therefore, it represents a valuable new biocatalytic tool.

Finding the Switch: Turning a Baeyer-Villiger Monooxygenase into a NADPH Oxidase.,Brondani PB, Dudek HM, Martinoli C, Mattevi A, Fraaije MW J Am Chem Soc. 2014 Dec 1. PMID:25423359[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Brondani PB, Dudek HM, Martinoli C, Mattevi A, Fraaije MW. Finding the Switch: Turning a Baeyer-Villiger Monooxygenase into a NADPH Oxidase. J Am Chem Soc. 2014 Dec 1. PMID:25423359 doi:http://dx.doi.org/10.1021/ja508265b

4d03, resolution 1.81Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA