Malate dehydrogenase: Difference between revisions

Michal Harel (talk | contribs)
No edit summary
No edit summary
Line 4: Line 4:
__TOC__
__TOC__
==Function==
==Function==
[[Malate dehydrogenase|Malate Dehydrogenase]] (MDH)(PDB entry [http://www.pdb.org/pdb/explore/explore.do?structureId=2X0I 2x0i]) is most known for its role in the metabolic pathway of the tricarboxylic acid cycle, also know as the Krebs cycle (after [http://en.wikipedia.org/wiki/Hans_Adolf_Krebs| Sir Hans Krebs]), which is critical to cellular respiration in cells [http://en.wikipedia.org/wiki/Citric_acid_cycle]; however, the enzyme is also involved on many other metabolic pathways such as glyoxylate bypass, amino acid synthesis, gluconeogenesis, and oxidation/reduction balance <ref>PMID:12537350</ref>. It is classified as an oxidoreductase[http://en.wikipedia.org/wiki/Oxidoreductase]. Malate dehydrogenase has been extensively studied due to its many isozymes <ref>PMID:20173310</ref>. The enzyme exists in two subcellular locations: mitochondria and cytoplasm. In the mitochondria, the enzyme catalyzes the reaction of malate to oxaloacetate; however, in the cytoplasm, the enzyme catalyzes oxaloacetate to malate to allow transport <ref>PMID:20173310</ref>. This conversion is an essential catalytic step in each different metabolic mechanism. The enzyme malate dehydrogenase is composed of either a dimer or tetramer depending on the location of the enzyme and the organism it is located in <ref>PMID: 9834842</ref>. During catalysis, the enzyme subunits are non-cooperative between active sites. The mitochondrial MDH suffers a complex allosteric control by citrate, but no other known metabolic regulation mechanisms have been discovered. Further, the exact mechanism of regulation has yet to be discovered <ref>PMID:7574693</ref>. The optimal pH is 7.6 for oxaloacetate conversion and 9.6 for malate conversion. The reported K<sub>m</sub> value for malate conversion is 215 &micro;M and the V<sub>max</sub> value is 87.8 &micro;M/min <ref>PMID:19277715</ref>. For halophilic MDH details, see [[Halophilic malate dehydrogenase]].  See also:<br />
[[Malate dehydrogenase|Malate Dehydrogenase]] (MDH; PDB entry [http://www.pdb.org/pdb/explore/explore.do?structureId=2X0I 2x0i]) is most known for its role in the metabolic pathway of the tricarboxylic acid cycle, also know as the Krebs cycle (after [http://en.wikipedia.org/wiki/Hans_Adolf_Krebs| Sir Hans Krebs]), which is critical to cellular respiration in cells [http://en.wikipedia.org/wiki/Citric_acid_cycle]; however, the enzyme is also involved on many other metabolic pathways such as glyoxylate bypass, amino acid synthesis, gluconeogenesis, and oxidation/reduction balance <ref>PMID:12537350</ref>. It is classified as an oxidoreductase[http://en.wikipedia.org/wiki/Oxidoreductase]. Malate dehydrogenase has been extensively studied due to its many isozymes <ref>PMID:20173310</ref>. The enzyme exists in two subcellular locations: mitochondria and cytoplasm. In the mitochondria, the enzyme catalyzes the reaction of malate to oxaloacetate; however, in the cytoplasm, the enzyme catalyzes oxaloacetate to malate to allow transport <ref>PMID:20173310</ref>. This conversion is an essential catalytic step in each different metabolic mechanism. The enzyme malate dehydrogenase is composed of either a dimer or tetramer depending on the location of the enzyme and the organism it is located in <ref>PMID: 9834842</ref>. During catalysis, the enzyme subunits are non-cooperative between active sites. The mitochondrial MDH suffers a complex allosteric control by citrate, but no other known metabolic regulation mechanisms have been discovered. Further, the exact mechanism of regulation has yet to be discovered <ref>PMID:7574693</ref>. The optimal pH is 7.6 for oxaloacetate conversion and 9.6 for malate conversion. The reported K<sub>m</sub> value for malate conversion is 215 &micro;M and the V<sub>max</sub> value is 87.8 &micro;M/min <ref>PMID:19277715</ref>. For halophilic MDH details, see [[Halophilic malate dehydrogenase]].  See also:<br />
*[[Krebs cycle carbons]]
*[[Krebs cycle carbons]]
*[[Krebs cycle importance]]
*[[Krebs cycle importance]]

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

Jake Ezell, David Canner, Alexander Berchansky, Joshua Johnson, Michal Harel, Jaime Prilusky, Joel L. Sussman, Angel Herraez