4b2s: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
<StructureSection load='4b2s' size='340' side='right'caption='[[4b2s]], [[NMR_Ensembles_of_Models | 20 NMR models]]' scene=''> | <StructureSection load='4b2s' size='340' side='right'caption='[[4b2s]], [[NMR_Ensembles_of_Models | 20 NMR models]]' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[4b2s]] is a 1 chain structure with sequence from [ | <table><tr><td colspan='2'>[[4b2s]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Human Human]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4B2S OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4B2S FirstGlance]. <br> | ||
</td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1fhc|1fhc]], [[1haq|1haq]], [[1hcc|1hcc]], [[1hfh|1hfh]], [[1hfi|1hfi]], [[1kov|1kov]], [[2g7i|2g7i]], [[2jgw|2jgw]], [[2jgx|2jgx]], [[2uwn|2uwn]], [[2v8e|2v8e]], [[2w80|2w80]], [[2w81|2w81]], [[2wii|2wii]], [[2xqw|2xqw]], [[4ayd|4ayd]], [[4aye|4aye]], [[4ayi|4ayi]], [[4aym|4aym]], [[4b2r|4b2r]]</td></tr> | </td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[1fhc|1fhc]], [[1haq|1haq]], [[1hcc|1hcc]], [[1hfh|1hfh]], [[1hfi|1hfi]], [[1kov|1kov]], [[2g7i|2g7i]], [[2jgw|2jgw]], [[2jgx|2jgx]], [[2uwn|2uwn]], [[2v8e|2v8e]], [[2w80|2w80]], [[2w81|2w81]], [[2wii|2wii]], [[2xqw|2xqw]], [[4ayd|4ayd]], [[4aye|4aye]], [[4ayi|4ayi]], [[4aym|4aym]], [[4b2r|4b2r]]</div></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4b2s FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4b2s OCA], [https://pdbe.org/4b2s PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4b2s RCSB], [https://www.ebi.ac.uk/pdbsum/4b2s PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4b2s ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Disease == | == Disease == | ||
[[ | [[https://www.uniprot.org/uniprot/CFAH_HUMAN CFAH_HUMAN]] Genetic variations in CFH are associated with basal laminar drusen (BLD) [MIM:[https://omim.org/entry/126700 126700]]; also known as drusen of Bruch membrane or cuticular drusen or grouped early adult-onset drusen. Drusen are extracellular deposits that accumulate below the retinal pigment epithelium on Bruch membrane. Basal laminar drusen refers to an early adult-onset drusen phenotype that shows a pattern of uniform small, slightly raised yellow subretinal nodules randomly scattered in the macula. In later stages, these drusen often become more numerous, with clustered groups of drusen scattered throughout the retina. In time these small basal laminar drusen may expand and ultimately lead to a serous pigment epithelial detachment of the macula that may result in vision loss. Defects in CFH are the cause of complement factor H deficiency (CFHD) [MIM:[https://omim.org/entry/609814 609814]]. A disorder that can manifest as several different phenotypes, including asymptomatic, recurrent bacterial infections, and renal failure. Laboratory features usually include decreased serum levels of factor H, complement component C3, and a decrease in other terminal complement components, indicating activation of the alternative complement pathway. It is associated with a number of renal diseases with variable clinical presentation and progression, including membranoproliferative glomerulonephritis and atypical hemolytic uremic syndrome.<ref>PMID:9312129</ref> <ref>PMID:10803850</ref> <ref>PMID:11170895</ref> <ref>PMID:11170896</ref> <ref>PMID:11158219</ref> <ref>PMID:12020532</ref> <ref>PMID:14978182</ref> <ref>PMID:16612335</ref> Defects in CFH are a cause of susceptibility to hemolytic uremic syndrome atypical type 1 (AHUS1) [MIM:[https://omim.org/entry/235400 235400]]. An atypical form of hemolytic uremic syndrome. It is a complex genetic disease characterized by microangiopathic hemolytic anemia, thrombocytopenia, renal failure and absence of episodes of enterocolitis and diarrhea. In contrast to typical hemolytic uremic syndrome, atypical forms have a poorer prognosis, with higher death rates and frequent progression to end-stage renal disease. Note=Susceptibility to the development of atypical hemolytic uremic syndrome can be conferred by mutations in various components of or regulatory factors in the complement cascade system. Other genes may play a role in modifying the phenotype.<ref>PMID:14978182</ref> <ref>PMID:9551389</ref> <ref>PMID:10577907</ref> <ref>PMID:10762557</ref> <ref>PMID:11851332</ref> <ref>PMID:14583443</ref> <ref>PMID:12960213</ref> <ref>PMID:20513133</ref> Genetic variation in CFH is associated with age-related macular degeneration type 4 (ARMD4) [MIM:[https://omim.org/entry/610698 610698]]. ARMD is a multifactorial eye disease and the most common cause of irreversible vision loss in the developed world. In most patients, the disease is manifest as ophthalmoscopically visible yellowish accumulations of protein and lipid (known as drusen) that lie beneath the retinal pigment epithelium and within an elastin-containing structure known as Bruch membrane.<ref>PMID:22019782</ref> | ||
== Function == | == Function == | ||
[[ | [[https://www.uniprot.org/uniprot/CFAH_HUMAN CFAH_HUMAN]] Factor H functions as a cofactor in the inactivation of C3b by factor I and also increases the rate of dissociation of the C3bBb complex (C3 convertase) and the (C3b)NBB complex (C5 convertase) in the alternative complement pathway. | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
== Publication Abstract from PubMed == | == Publication Abstract from PubMed == | ||
Line 22: | Line 22: | ||
==See Also== | ==See Also== | ||
*[[Complement factor|Complement factor]] | *[[Complement factor 3D structures|Complement factor 3D structures]] | ||
== References == | == References == | ||
<references/> | <references/> |
Revision as of 09:57, 31 August 2022
Solution structure of CCP modules 11-12 of complement factor HSolution structure of CCP modules 11-12 of complement factor H
Structural highlights
Disease[CFAH_HUMAN] Genetic variations in CFH are associated with basal laminar drusen (BLD) [MIM:126700]; also known as drusen of Bruch membrane or cuticular drusen or grouped early adult-onset drusen. Drusen are extracellular deposits that accumulate below the retinal pigment epithelium on Bruch membrane. Basal laminar drusen refers to an early adult-onset drusen phenotype that shows a pattern of uniform small, slightly raised yellow subretinal nodules randomly scattered in the macula. In later stages, these drusen often become more numerous, with clustered groups of drusen scattered throughout the retina. In time these small basal laminar drusen may expand and ultimately lead to a serous pigment epithelial detachment of the macula that may result in vision loss. Defects in CFH are the cause of complement factor H deficiency (CFHD) [MIM:609814]. A disorder that can manifest as several different phenotypes, including asymptomatic, recurrent bacterial infections, and renal failure. Laboratory features usually include decreased serum levels of factor H, complement component C3, and a decrease in other terminal complement components, indicating activation of the alternative complement pathway. It is associated with a number of renal diseases with variable clinical presentation and progression, including membranoproliferative glomerulonephritis and atypical hemolytic uremic syndrome.[1] [2] [3] [4] [5] [6] [7] [8] Defects in CFH are a cause of susceptibility to hemolytic uremic syndrome atypical type 1 (AHUS1) [MIM:235400]. An atypical form of hemolytic uremic syndrome. It is a complex genetic disease characterized by microangiopathic hemolytic anemia, thrombocytopenia, renal failure and absence of episodes of enterocolitis and diarrhea. In contrast to typical hemolytic uremic syndrome, atypical forms have a poorer prognosis, with higher death rates and frequent progression to end-stage renal disease. Note=Susceptibility to the development of atypical hemolytic uremic syndrome can be conferred by mutations in various components of or regulatory factors in the complement cascade system. Other genes may play a role in modifying the phenotype.[9] [10] [11] [12] [13] [14] [15] [16] Genetic variation in CFH is associated with age-related macular degeneration type 4 (ARMD4) [MIM:610698]. ARMD is a multifactorial eye disease and the most common cause of irreversible vision loss in the developed world. In most patients, the disease is manifest as ophthalmoscopically visible yellowish accumulations of protein and lipid (known as drusen) that lie beneath the retinal pigment epithelium and within an elastin-containing structure known as Bruch membrane.[17] Function[CFAH_HUMAN] Factor H functions as a cofactor in the inactivation of C3b by factor I and also increases the rate of dissociation of the C3bBb complex (C3 convertase) and the (C3b)NBB complex (C5 convertase) in the alternative complement pathway. Publication Abstract from PubMedThe 155-kDa plasma glycoprotein factor H (FH), which consists of 20 complement control protein (CCP) modules, protects self-tissue but not foreign organisms from damage by the complement cascade. Protection is achieved by selective engagement of FH, via CCPs 1-4, CCPs 6-8 and CCPs 19-20, with polyanion-rich host surfaces that bear covalently attached, activation-specific, fragments of complement component C3. The role of intervening CCPs 9-18 in this process is obscured by lack of structural knowledge. We have concatenated new high-resolution solution structures of overlapping recombinant CCP pairs, 10-11 and 11-12, to form a three-dimensional structure of CCPs 10-12 and validated it by small-angle X-ray scattering of the recombinant triple-module fragment. Superimposing CCP 12 of this 10-12 structure with CCP 12 from the previously solved CCP 12-13 structure yielded an S-shaped structure for CCPs 10-13 in which modules are tilted by 80-110 degrees with respect to immediate neighbors, but the bend between CCPs 10 and 11 is counter to the arc traced by CCPs 11-13. Including this four-CCP structure in interpretation of scattering data for the longer recombinant segments, CCPs 10-15 and 8-15, implied flexible attachment of CCPs 8 and 9 to CCP 10 but compact and intimate arrangements of CCP 14 with CCPs 12, 13 and 15. Taken together with difficulties in recombinant production of module pairs 13-14 and 14-15, the aberrant structure of CCP 13 and the variability of 13-14 linker sequences among orthologues, a structural dependency of CCP 14 on its neighbors is suggested; this has implications for the FH mechanism. Solution Structure of CCP Modules 10-12 Illuminates Functional Architecture of the Complement Regulator, Factor H.,Makou E, Mertens HD, Maciejewski M, Soares DC, Matis I, Schmidt CQ, Herbert AP, Svergun DI, Barlow PN J Mol Biol. 2012 Sep 25. pii: S0022-2836(12)00770-X. doi:, 10.1016/j.jmb.2012.09.013. PMID:23017427[18] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|