7ycc: Difference between revisions

No edit summary
No edit summary
Line 1: Line 1:


==KRas G12C in complex with Compound 5c==
==KRas G12C in complex with Compound 5c==
<StructureSection load='7ycc' size='340' side='right'caption='[[7ycc]]' scene=''>
<StructureSection load='7ycc' size='340' side='right'caption='[[7ycc]], [[Resolution|resolution]] 1.79&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7YCC OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7YCC FirstGlance]. <br>
<table><tr><td colspan='2'>[[7ycc]] is a 3 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7YCC OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7YCC FirstGlance]. <br>
</td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7ycc FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7ycc OCA], [https://pdbe.org/7ycc PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7ycc RCSB], [https://www.ebi.ac.uk/pdbsum/7ycc PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7ycc ProSAT]</span></td></tr>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GDP:GUANOSINE-5-DIPHOSPHATE'>GDP</scene>, <scene name='pdbligand=IQC:1-[7-[6-chloranyl-8-fluoranyl-7-(5-methyl-1~{H}-indazol-4-yl)-2-[(1-methylpiperidin-4-yl)amino]quinazolin-4-yl]-2,7-diazaspiro[3.5]nonan-2-yl]propan-1-one'>IQC</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Small_monomeric_GTPase Small monomeric GTPase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.6.5.2 3.6.5.2] </span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7ycc FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7ycc OCA], [https://pdbe.org/7ycc PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7ycc RCSB], [https://www.ebi.ac.uk/pdbsum/7ycc PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7ycc ProSAT]</span></td></tr>
</table>
</table>
== Disease ==
[[https://www.uniprot.org/uniprot/RASK_HUMAN RASK_HUMAN]] Defects in KRAS are a cause of acute myelogenous leukemia (AML) [MIM:[https://omim.org/entry/601626 601626]]. AML is a malignant disease in which hematopoietic precursors are arrested in an early stage of development.<ref>PMID:8955068</ref>  Defects in KRAS are a cause of juvenile myelomonocytic leukemia (JMML) [MIM:[https://omim.org/entry/607785 607785]]. JMML is a pediatric myelodysplastic syndrome that constitutes approximately 30% of childhood cases of myelodysplastic syndrome (MDS) and 2% of leukemia. It is characterized by leukocytosis with tissue infiltration and in vitro hypersensitivity of myeloid progenitors to granulocyte-macrophage colony stimulating factor.  Defects in KRAS are the cause of Noonan syndrome type 3 (NS3) [MIM:[https://omim.org/entry/609942 609942]]. Noonan syndrome (NS) [MIM:[https://omim.org/entry/163950 163950]] is a disorder characterized by dysmorphic facial features, short stature, hypertelorism, cardiac anomalies, deafness, motor delay, and a bleeding diathesis. It is a genetically heterogeneous and relatively common syndrome, with an estimated incidence of 1 in 1000-2500 live births. Rarely, NS is associated with juvenile myelomonocytic leukemia (JMML). NS3 inheritance is autosomal dominant.<ref>PMID:16773572</ref> <ref>PMID:16474405</ref> <ref>PMID:17468812</ref> <ref>PMID:17056636</ref> <ref>PMID:19396835</ref> <ref>PMID:20949621</ref>  Defects in KRAS are a cause of gastric cancer (GASC) [MIM:[https://omim.org/entry/613659 613659]]; also called gastric cancer intestinal or stomach cancer. Gastric cancer is a malignant disease which starts in the stomach, can spread to the esophagus or the small intestine, and can extend through the stomach wall to nearby lymph nodes and organs. It also can metastasize to other parts of the body. The term gastric cancer or gastric carcinoma refers to adenocarcinoma of the stomach that accounts for most of all gastric malignant tumors. Two main histologic types are recognized, diffuse type and intestinal type carcinomas. Diffuse tumors are poorly differentiated infiltrating lesions, resulting in thickening of the stomach. In contrast, intestinal tumors are usually exophytic, often ulcerating, and associated with intestinal metaplasia of the stomach, most often observed in sporadic disease.<ref>PMID:3034404</ref> <ref>PMID:7773929</ref> <ref>PMID:14534542</ref>  Note=Defects in KRAS are a cause of pylocytic astrocytoma (PA). Pylocytic astrocytomas are neoplasms of the brain and spinal cord derived from glial cells which vary from histologically benign forms to highly anaplastic and malignant tumors.<ref>PMID:8439212</ref>  Defects in KRAS are a cause of cardiofaciocutaneous syndrome (CFC syndrome) [MIM:[https://omim.org/entry/115150 115150]]; also known as cardio-facio-cutaneous syndrome. CFC syndrome is characterized by a distinctive facial appearance, heart defects and mental retardation. Heart defects include pulmonic stenosis, atrial septal defects and hypertrophic cardiomyopathy. Some affected individuals present with ectodermal abnormalities such as sparse, friable hair, hyperkeratotic skin lesions and a generalized ichthyosis-like condition. Typical facial features are similar to Noonan syndrome. They include high forehead with bitemporal constriction, hypoplastic supraorbital ridges, downslanting palpebral fissures, a depressed nasal bridge, and posteriorly angulated ears with prominent helices. The inheritance of CFC syndrome is autosomal dominant.  Note=KRAS mutations are involved in cancer development.
== Function ==
[[https://www.uniprot.org/uniprot/RASK_HUMAN RASK_HUMAN]] Ras proteins bind GDP/GTP and possess intrinsic GTPase activity.
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
RAS protein plays a key role in cellular proliferation and differentiation. RAS gene mutation is a known driver of oncogenic alternation in human cancer. RAS inhibition is an effective therapeutic treatment for solid tumors, but RAS protein has been classified as an undruggable target. Recent reports have demonstrated that a covalent binder to KRAS protein at a mutated cysteine residue (G12C) is effective for the treatment of solid tumors. Here, we report a series of 1-{2,7-diazaspiro[3.5]nonan-2-yl}prop-2-en-1-one derivatives as potent covalent inhibitors against KRAS G12C identified throughout structural optimization of an acryloyl amine moiety to improve in vitro inhibitory activity. From an X-ray complex structural analysis, the 1-{2,7-diazaspiro[3.5]nonan-2-yl}prop-2-en-1-one moiety binds in the switch-II pocket of KRAS G12C. Further optimization of the lead compound (5c) led to the successful identification of 1-[7-[6-chloro-8-fluoro-7-(5-methyl-1H-indazol-4-yl)-2-[(1-methylpiperidin-4-yl)a mino]quinazolin-4-yl]-2,7-diazaspiro[3.5]nonan-2-yl]prop-2-en-1-one (7b), a potent compound with high metabolic stabilities in human and mouse liver microsomes. Compound 7b showed a dose-dependent antitumor effect on subcutaneous administration in an NCI-H1373 xenograft mouse model.
Discovery and biological evaluation of 1-{2,7-diazaspiro[3.5]nonan-2-yl}prop-2-en-1-one derivatives as covalent inhibitors of KRAS G12C with favorable metabolic stability and anti-tumor activity.,Imaizumi T, Akaiwa M, Abe T, Nigawara T, Koike T, Satake Y, Watanabe K, Kaneko O, Amano Y, Mori K, Yamanaka Y, Nagashima T, Shimazaki M, Kuramoto K Bioorg Med Chem. 2022 Jul 30;71:116949. doi: 10.1016/j.bmc.2022.116949. PMID:35926326<ref>PMID:35926326</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 7ycc" style="background-color:#fffaf0;"></div>
== References ==
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: Amano Y]]
[[Category: Small monomeric GTPase]]
[[Category: Amano, Y]]
[[Category: Oncoprotein-inhibitor complex]]

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA