3u6h: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Crystal structure of c-Met in complex with pyrazolone inhibitor 26== | ==Crystal structure of c-Met in complex with pyrazolone inhibitor 26== | ||
<StructureSection load='3u6h' size='340' side='right' caption='[[3u6h]], [[Resolution|resolution]] 2.00Å' scene=''> | <StructureSection load='3u6h' size='340' side='right'caption='[[3u6h]], [[Resolution|resolution]] 2.00Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[3u6h]] is a 1 chain structure with sequence from [ | <table><tr><td colspan='2'>[[3u6h]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3U6H OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3U6H FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=03X:N-{4-[(6,7-DIMETHOXYQUINOLIN-4-YL)OXY]-3-FLUOROPHENYL}-1,5-DIMETHYL-3-OXO-2-PHENYL-2,3-DIHYDRO-1H-PYRAZOLE-4-CARBOXAMIDE'>03X</scene></td></tr> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=03X:N-{4-[(6,7-DIMETHOXYQUINOLIN-4-YL)OXY]-3-FLUOROPHENYL}-1,5-DIMETHYL-3-OXO-2-PHENYL-2,3-DIHYDRO-1H-PYRAZOLE-4-CARBOXAMIDE'>03X</scene></td></tr> | ||
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3u6i|3u6i]], [[3u6j|3u6j]]</td></tr> | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[3u6i|3u6i]], [[3u6j|3u6j]]</div></td></tr> | ||
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">MET ([ | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">MET ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr> | ||
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[ | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Receptor_protein-tyrosine_kinase Receptor protein-tyrosine kinase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.10.1 2.7.10.1] </span></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3u6h FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3u6h OCA], [https://pdbe.org/3u6h PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3u6h RCSB], [https://www.ebi.ac.uk/pdbsum/3u6h PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3u6h ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Disease == | == Disease == | ||
[[ | [[https://www.uniprot.org/uniprot/MET_HUMAN MET_HUMAN]] Note=Activation of MET after rearrangement with the TPR gene produces an oncogenic protein. Note=Defects in MET may be associated with gastric cancer. Defects in MET are a cause of hepatocellular carcinoma (HCC) [MIM:[https://omim.org/entry/114550 114550]].<ref>PMID:9927037</ref> Defects in MET are a cause of renal cell carcinoma papillary (RCCP) [MIM:[https://omim.org/entry/605074 605074]]. It is a subtype of renal cell carcinoma tending to show a tubulo-papillary architecture formed by numerous, irregular, finger-like projections of connective tissue. Renal cell carcinoma is a heterogeneous group of sporadic or hereditary carcinoma derived from cells of the proximal renal tubular epithelium. It is subclassified into common renal cell carcinoma (clear cell, non-papillary carcinoma), papillary renal cell carcinoma, chromophobe renal cell carcinoma, collecting duct carcinoma with medullary carcinoma of the kidney, and unclassified renal cell carcinoma.<ref>PMID:9140397</ref> <ref>PMID:9563489</ref> <ref>PMID:10433944</ref> <ref>PMID:10417759</ref> <ref>PMID:10327054</ref> Note=A common allele in the promoter region of the MET shows genetic association with susceptibility to autism in some families. Functional assays indicate a decrease in MET promoter activity and altered binding of specific transcription factor complexes. Note=MET activating mutations may be involved in the development of a highly malignant, metastatic syndrome known as cancer of unknown primary origin (CUP) or primary occult malignancy. Systemic neoplastic spread is generally a late event in cancer progression. However, in some instances, distant dissemination arises at a very early stage, so that metastases reach clinical relevance before primary lesions. Sometimes, the primary lesions cannot be identified in spite of the progresses in the diagnosis of malignancies.<ref>PMID:20949619</ref> | ||
== Function == | == Function == | ||
[[ | [[https://www.uniprot.org/uniprot/MET_HUMAN MET_HUMAN]] Receptor tyrosine kinase that transduces signals from the extracellular matrix into the cytoplasm by binding to hepatocyte growth factor/HGF ligand. Regulates many physiological processes including proliferation, scattering, morphogenesis and survival. Ligand binding at the cell surface induces autophosphorylation of MET on its intracellular domain that provides docking sites for downstream signaling molecules. Following activation by ligand, interacts with the PI3-kinase subunit PIK3R1, PLCG1, SRC, GRB2, STAT3 or the adapter GAB1. Recruitment of these downstream effectors by MET leads to the activation of several signaling cascades including the RAS-ERK, PI3 kinase-AKT, or PLCgamma-PKC. The RAS-ERK activation is associated with the morphogenetic effects while PI3K/AKT coordinates prosurvival effects. During embryonic development, MET signaling plays a role in gastrulation, development and migration of muscles and neuronal precursors, angiogenesis and kidney formation. In adults, participates in wound healing as well as organ regeneration and tissue remodeling. Promotes also differentiation and proliferation of hematopoietic cells.<ref>PMID:1846706</ref> <ref>PMID:8182137</ref> <ref>PMID:15314156</ref> Acts as a receptor for Listeria internalin inlB, mediating entry of the pathogen into cells.<ref>PMID:1846706</ref> <ref>PMID:8182137</ref> <ref>PMID:15314156</ref> | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
== Publication Abstract from PubMed == | == Publication Abstract from PubMed == | ||
Line 25: | Line 25: | ||
==See Also== | ==See Also== | ||
*[[Hepatocyte growth factor receptor|Hepatocyte growth factor receptor]] | *[[Hepatocyte growth factor receptor 3D structures|Hepatocyte growth factor receptor 3D structures]] | ||
== References == | == References == | ||
<references/> | <references/> | ||
Line 31: | Line 31: | ||
</StructureSection> | </StructureSection> | ||
[[Category: Human]] | [[Category: Human]] | ||
[[Category: Large Structures]] | |||
[[Category: Receptor protein-tyrosine kinase]] | [[Category: Receptor protein-tyrosine kinase]] | ||
[[Category: Bellon, S F]] | [[Category: Bellon, S F]] |
Revision as of 08:59, 13 July 2022
Crystal structure of c-Met in complex with pyrazolone inhibitor 26Crystal structure of c-Met in complex with pyrazolone inhibitor 26
Structural highlights
Disease[MET_HUMAN] Note=Activation of MET after rearrangement with the TPR gene produces an oncogenic protein. Note=Defects in MET may be associated with gastric cancer. Defects in MET are a cause of hepatocellular carcinoma (HCC) [MIM:114550].[1] Defects in MET are a cause of renal cell carcinoma papillary (RCCP) [MIM:605074]. It is a subtype of renal cell carcinoma tending to show a tubulo-papillary architecture formed by numerous, irregular, finger-like projections of connective tissue. Renal cell carcinoma is a heterogeneous group of sporadic or hereditary carcinoma derived from cells of the proximal renal tubular epithelium. It is subclassified into common renal cell carcinoma (clear cell, non-papillary carcinoma), papillary renal cell carcinoma, chromophobe renal cell carcinoma, collecting duct carcinoma with medullary carcinoma of the kidney, and unclassified renal cell carcinoma.[2] [3] [4] [5] [6] Note=A common allele in the promoter region of the MET shows genetic association with susceptibility to autism in some families. Functional assays indicate a decrease in MET promoter activity and altered binding of specific transcription factor complexes. Note=MET activating mutations may be involved in the development of a highly malignant, metastatic syndrome known as cancer of unknown primary origin (CUP) or primary occult malignancy. Systemic neoplastic spread is generally a late event in cancer progression. However, in some instances, distant dissemination arises at a very early stage, so that metastases reach clinical relevance before primary lesions. Sometimes, the primary lesions cannot be identified in spite of the progresses in the diagnosis of malignancies.[7] Function[MET_HUMAN] Receptor tyrosine kinase that transduces signals from the extracellular matrix into the cytoplasm by binding to hepatocyte growth factor/HGF ligand. Regulates many physiological processes including proliferation, scattering, morphogenesis and survival. Ligand binding at the cell surface induces autophosphorylation of MET on its intracellular domain that provides docking sites for downstream signaling molecules. Following activation by ligand, interacts with the PI3-kinase subunit PIK3R1, PLCG1, SRC, GRB2, STAT3 or the adapter GAB1. Recruitment of these downstream effectors by MET leads to the activation of several signaling cascades including the RAS-ERK, PI3 kinase-AKT, or PLCgamma-PKC. The RAS-ERK activation is associated with the morphogenetic effects while PI3K/AKT coordinates prosurvival effects. During embryonic development, MET signaling plays a role in gastrulation, development and migration of muscles and neuronal precursors, angiogenesis and kidney formation. In adults, participates in wound healing as well as organ regeneration and tissue remodeling. Promotes also differentiation and proliferation of hematopoietic cells.[8] [9] [10] Acts as a receptor for Listeria internalin inlB, mediating entry of the pathogen into cells.[11] [12] [13] Publication Abstract from PubMedDeregulation of c-Met receptor tyrosine kinase activity leads to tumorigenesis and metastasis in animal models. More importantly, the identification of activating mutations in c-Met, as well as MET gene amplification in human cancers, points to c-Met as an important target for cancer therapy. We have previously described two classes of c-Met kinase inhibitors (class I and class II) that differ in their binding modes and selectivity profiles. The class II inhibitors tend to have activities on multiple kinases. Knowledge of the binding mode of these molecules in the c-Met protein led to the design and evaluation of several new class II c-Met inhibitors that utilize various 5-membered cyclic carboxamides to conformationally restrain key pharmacophoric groups within the molecule. These investigations resulted in the identification of a potent and novel class of pyrazolone c-Met inhibitors with good in vivo activity. Structure-Based Design of Novel Class II c-Met Inhibitors: 1. Identification of Pyrazolone-Based Derivatives.,Norman MH, Liu L, Lee M, Xi N, Fellows I, D'Angelo ND, Dominguez C, Rex K, Bellon SF, Kim TS, Dussault I J Med Chem. 2012 Feb 24. PMID:22320343[14] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|