3sv5: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Engineered medium-affinity halide-binding protein derived from YFP: iodide complex== | ==Engineered medium-affinity halide-binding protein derived from YFP: iodide complex== | ||
<StructureSection load='3sv5' size='340' side='right' caption='[[3sv5]], [[Resolution|resolution]] 1.53Å' scene=''> | <StructureSection load='3sv5' size='340' side='right'caption='[[3sv5]], [[Resolution|resolution]] 1.53Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[3sv5]] is a 1 chain structure with sequence from [ | <table><tr><td colspan='2'>[[3sv5]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Aeqvi Aeqvi]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3SV5 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3SV5 FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=FMT:FORMIC+ACID'>FMT</scene>, <scene name='pdbligand=IOD:IODIDE+ION'>IOD</scene></td></tr> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=FMT:FORMIC+ACID'>FMT</scene>, <scene name='pdbligand=IOD:IODIDE+ION'>IOD</scene></td></tr> | ||
<tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=CR2:{(4Z)-2-(AMINOMETHYL)-4-[(4-HYDROXYPHENYL)METHYLIDENE]-5-OXO-4,5-DIHYDRO-1H-IMIDAZOL-1-YL}ACETIC+ACID'>CR2</scene></td></tr> | <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=CR2:{(4Z)-2-(AMINOMETHYL)-4-[(4-HYDROXYPHENYL)METHYLIDENE]-5-OXO-4,5-DIHYDRO-1H-IMIDAZOL-1-YL}ACETIC+ACID'>CR2</scene></td></tr> | ||
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3sry|3sry]], [[3ss0|3ss0]], [[3ssh|3ssh]], [[3ssk|3ssk]], [[3ssl|3ssl]], [[3ssp|3ssp]], [[3sst|3sst]], [[3ssv|3ssv]], [[3ssy|3ssy]], [[3sve|3sve]], [[3st0|3st0]], [[3svb|3svb]], [[3svc|3svc]], [[3svd|3svd]]</td></tr> | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[3sry|3sry]], [[3ss0|3ss0]], [[3ssh|3ssh]], [[3ssk|3ssk]], [[3ssl|3ssl]], [[3ssp|3ssp]], [[3sst|3sst]], [[3ssv|3ssv]], [[3ssy|3ssy]], [[3sve|3sve]], [[3st0|3st0]], [[3svb|3svb]], [[3svc|3svc]], [[3svd|3svd]]</div></td></tr> | ||
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">GFP ([ | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">GFP ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=6100 AEQVI])</td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3sv5 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3sv5 OCA], [https://pdbe.org/3sv5 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3sv5 RCSB], [https://www.ebi.ac.uk/pdbsum/3sv5 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3sv5 ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
[[ | [[https://www.uniprot.org/uniprot/GFP_AEQVI GFP_AEQVI]] Energy-transfer acceptor. Its role is to transduce the blue chemiluminescence of the protein aequorin into green fluorescent light by energy transfer. Fluoresces in vivo upon receiving energy from the Ca(2+)-activated photoprotein aequorin. | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
== Publication Abstract from PubMed == | == Publication Abstract from PubMed == | ||
Line 21: | Line 21: | ||
</div> | </div> | ||
<div class="pdbe-citations 3sv5" style="background-color:#fffaf0;"></div> | <div class="pdbe-citations 3sv5" style="background-color:#fffaf0;"></div> | ||
==See Also== | |||
*[[Green Fluorescent Protein 3D structures|Green Fluorescent Protein 3D structures]] | |||
== References == | == References == | ||
<references/> | <references/> | ||
Line 26: | Line 29: | ||
</StructureSection> | </StructureSection> | ||
[[Category: Aeqvi]] | [[Category: Aeqvi]] | ||
[[Category: Large Structures]] | |||
[[Category: Beese, L S]] | [[Category: Beese, L S]] | ||
[[Category: Grimley, J S]] | [[Category: Grimley, J S]] |
Revision as of 11:11, 29 June 2022
Engineered medium-affinity halide-binding protein derived from YFP: iodide complexEngineered medium-affinity halide-binding protein derived from YFP: iodide complex
Structural highlights
Function[GFP_AEQVI] Energy-transfer acceptor. Its role is to transduce the blue chemiluminescence of the protein aequorin into green fluorescent light by energy transfer. Fluoresces in vivo upon receiving energy from the Ca(2+)-activated photoprotein aequorin. Publication Abstract from PubMedWe describe an engineered fluorescent optogenetic sensor, SuperClomeleon, that robustly detects inhibitory synaptic activity in single, cultured mouse neurons by reporting intracellular chloride changes produced by exogenous GABA or inhibitory synaptic activity. Using a cell-free protein engineering automation methodology that bypasses gene cloning, we iteratively constructed, produced, and assayed hundreds of mutations in binding-site residues to identify improvements in Clomeleon, a first-generation, suboptimal sensor. Structural analysis revealed that these improvements involve halide contacts and distant side chain rearrangements. The development of optogenetic sensors that respond to neural activity enables cellular tracking of neural activity using optical, rather than electrophysiological, signals. Construction of such sensors using in vitro protein engineering establishes a powerful approach for developing new probes for brain imaging. Visualization of synaptic inhibition with an optogenetic sensor developed by cell-free protein engineering automation.,Grimley JS, Li L, Wang W, Wen L, Beese LS, Hellinga HW, Augustine GJ J Neurosci. 2013 Oct 9;33(41):16297-309. doi: 10.1523/JNEUROSCI.4616-11.2013. PMID:24107961[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|