3hsv: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 3: Line 3:
<StructureSection load='3hsv' size='340' side='right'caption='[[3hsv]], [[Resolution|resolution]] 1.43&Aring;' scene=''>
<StructureSection load='3hsv' size='340' side='right'caption='[[3hsv]], [[Resolution|resolution]] 1.43&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[3hsv]] is a 3 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human] and [http://en.wikipedia.org/wiki/Orang-utan Orang-utan]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3HSV OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3HSV FirstGlance]. <br>
<table><tr><td colspan='2'>[[3hsv]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Human Human] and [https://en.wikipedia.org/wiki/Orang-utan Orang-utan]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3HSV OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3HSV FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
<tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=ACE:ACETYL+GROUP'>ACE</scene></td></tr>
<tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=ACE:ACETYL+GROUP'>ACE</scene></td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3hqi|3hqi]], [[3hql|3hql]], [[3hqm|3hqm]], [[3htm|3htm]], [[3hu6|3hu6]], [[3hve|3hve]]</td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[3hqi|3hqi]], [[3hql|3hql]], [[3hqm|3hqm]], [[3htm|3htm]], [[3hu6|3hu6]], [[3hve|3hve]]</div></td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">SPOP ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9601 Orang-utan])</td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">SPOP ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9601 Orang-utan])</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3hsv FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3hsv OCA], [http://pdbe.org/3hsv PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=3hsv RCSB], [http://www.ebi.ac.uk/pdbsum/3hsv PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=3hsv ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3hsv FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3hsv OCA], [https://pdbe.org/3hsv PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3hsv RCSB], [https://www.ebi.ac.uk/pdbsum/3hsv PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3hsv ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/SPOP_HUMAN SPOP_HUMAN]] Inhibits IPF1/PDX1 transactivation of established target promoters, such as insulin, may be by recruiting a repressor complex (By similarity). In complex with CUL3, involved in ubiquitination of BMI1, H2AFY and DAXX, and probably also in ubiquitination and proteasomal degradation of Gli2 or Gli3.<ref>PMID:14528312</ref> <ref>PMID:15897469</ref> <ref>PMID:16524876</ref>  [[http://www.uniprot.org/uniprot/H2AY_HUMAN H2AY_HUMAN]] Variant histone H2A which replaces conventional H2A in a subset of nucleosomes where it represses transcription. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. Involved in stable X chromosome inactivation. Inhibits the binding of transcription factors and interferes with the activity of remodeling SWI/SNF complexes. Inhibits histone acetylation by EP300 and recruits class I HDACs, which induces a hypoacetylated state of chromatin. In addition, isoform 1, but not isoform 2, binds ADP-ribose and O-acetyl-ADP-ribose, and may be involved in ADP-ribose-mediated chromatin modulation.<ref>PMID:12718888</ref> <ref>PMID:15621527</ref> <ref>PMID:15897469</ref> <ref>PMID:16428466</ref> <ref>PMID:16107708</ref>   
[[https://www.uniprot.org/uniprot/SPOP_HUMAN SPOP_HUMAN]] Inhibits IPF1/PDX1 transactivation of established target promoters, such as insulin, may be by recruiting a repressor complex (By similarity). In complex with CUL3, involved in ubiquitination of BMI1, H2AFY and DAXX, and probably also in ubiquitination and proteasomal degradation of Gli2 or Gli3.<ref>PMID:14528312</ref> <ref>PMID:15897469</ref> <ref>PMID:16524876</ref>  [[https://www.uniprot.org/uniprot/H2AY_HUMAN H2AY_HUMAN]] Variant histone H2A which replaces conventional H2A in a subset of nucleosomes where it represses transcription. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. Involved in stable X chromosome inactivation. Inhibits the binding of transcription factors and interferes with the activity of remodeling SWI/SNF complexes. Inhibits histone acetylation by EP300 and recruits class I HDACs, which induces a hypoacetylated state of chromatin. In addition, isoform 1, but not isoform 2, binds ADP-ribose and O-acetyl-ADP-ribose, and may be involved in ADP-ribose-mediated chromatin modulation.<ref>PMID:12718888</ref> <ref>PMID:15621527</ref> <ref>PMID:15897469</ref> <ref>PMID:16428466</ref> <ref>PMID:16107708</ref>   
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]

Revision as of 14:56, 30 March 2022

Structures of SPOP-Substrate Complexes: Insights into Molecular Architectures of BTB-Cul3 Ubiquitin Ligases: SPOPMATHx-MacroH2ASBCpep2Structures of SPOP-Substrate Complexes: Insights into Molecular Architectures of BTB-Cul3 Ubiquitin Ligases: SPOPMATHx-MacroH2ASBCpep2

Structural highlights

3hsv is a 3 chain structure with sequence from Human and Orang-utan. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:,
NonStd Res:
Gene:SPOP (Orang-utan)
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

[SPOP_HUMAN] Inhibits IPF1/PDX1 transactivation of established target promoters, such as insulin, may be by recruiting a repressor complex (By similarity). In complex with CUL3, involved in ubiquitination of BMI1, H2AFY and DAXX, and probably also in ubiquitination and proteasomal degradation of Gli2 or Gli3.[1] [2] [3] [H2AY_HUMAN] Variant histone H2A which replaces conventional H2A in a subset of nucleosomes where it represses transcription. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. Involved in stable X chromosome inactivation. Inhibits the binding of transcription factors and interferes with the activity of remodeling SWI/SNF complexes. Inhibits histone acetylation by EP300 and recruits class I HDACs, which induces a hypoacetylated state of chromatin. In addition, isoform 1, but not isoform 2, binds ADP-ribose and O-acetyl-ADP-ribose, and may be involved in ADP-ribose-mediated chromatin modulation.[4] [5] [6] [7] [8]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

In the largest E3 ligase subfamily, Cul3 binds a BTB domain, and an associated protein-interaction domain such as MATH recruits substrates for ubiquitination. Here, we present biochemical and structural analyses of the MATH-BTB protein, SPOP. We define a SPOP-binding consensus (SBC) and determine structures revealing recognition of SBCs from the phosphatase Puc, the transcriptional regulator Ci, and the chromatin component MacroH2A. We identify a dimeric SPOP-Cul3 assembly involving a conserved helical structure C-terminal of BTB domains, which we call "3-box" due to its facilitating Cul3 binding and its resemblance to F-/SOCS-boxes in other cullin-based E3s. Structural flexibility between the substrate-binding MATH and Cul3-binding BTB/3-box domains potentially allows a SPOP dimer to engage multiple SBCs found within a single substrate, such as Puc. These studies provide a molecular understanding of how MATH-BTB proteins recruit substrates to Cul3 and how their dimerization and conformational variability may facilitate avid interactions with diverse substrates.

Structures of SPOP-substrate complexes: insights into molecular architectures of BTB-Cul3 ubiquitin ligases.,Zhuang M, Calabrese MF, Liu J, Waddell MB, Nourse A, Hammel M, Miller DJ, Walden H, Duda DM, Seyedin SN, Hoggard T, Harper JW, White KP, Schulman BA Mol Cell. 2009 Oct 9;36(1):39-50. PMID:19818708[9]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Furukawa M, He YJ, Borchers C, Xiong Y. Targeting of protein ubiquitination by BTB-Cullin 3-Roc1 ubiquitin ligases. Nat Cell Biol. 2003 Nov;5(11):1001-7. Epub 2003 Oct 5. PMID:14528312 doi:10.1038/ncb1056
  2. Hernandez-Munoz I, Lund AH, van der Stoop P, Boutsma E, Muijrers I, Verhoeven E, Nusinow DA, Panning B, Marahrens Y, van Lohuizen M. Stable X chromosome inactivation involves the PRC1 Polycomb complex and requires histone MACROH2A1 and the CULLIN3/SPOP ubiquitin E3 ligase. Proc Natl Acad Sci U S A. 2005 May 24;102(21):7635-40. Epub 2005 May 16. PMID:15897469 doi:0408918102
  3. Kwon JE, La M, Oh KH, Oh YM, Kim GR, Seol JH, Baek SH, Chiba T, Tanaka K, Bang OS, Joe CO, Chung CH. BTB domain-containing speckle-type POZ protein (SPOP) serves as an adaptor of Daxx for ubiquitination by Cul3-based ubiquitin ligase. J Biol Chem. 2006 May 5;281(18):12664-72. Epub 2006 Mar 8. PMID:16524876 doi:10.1074/jbc.M600204200
  4. Angelov D, Molla A, Perche PY, Hans F, Cote J, Khochbin S, Bouvet P, Dimitrov S. The histone variant macroH2A interferes with transcription factor binding and SWI/SNF nucleosome remodeling. Mol Cell. 2003 Apr;11(4):1033-41. PMID:12718888
  5. Zhang R, Poustovoitov MV, Ye X, Santos HA, Chen W, Daganzo SM, Erzberger JP, Serebriiskii IG, Canutescu AA, Dunbrack RL, Pehrson JR, Berger JM, Kaufman PD, Adams PD. Formation of MacroH2A-containing senescence-associated heterochromatin foci and senescence driven by ASF1a and HIRA. Dev Cell. 2005 Jan;8(1):19-30. PMID:15621527 doi:S1534580704004083
  6. Hernandez-Munoz I, Lund AH, van der Stoop P, Boutsma E, Muijrers I, Verhoeven E, Nusinow DA, Panning B, Marahrens Y, van Lohuizen M. Stable X chromosome inactivation involves the PRC1 Polycomb complex and requires histone MACROH2A1 and the CULLIN3/SPOP ubiquitin E3 ligase. Proc Natl Acad Sci U S A. 2005 May 24;102(21):7635-40. Epub 2005 May 16. PMID:15897469 doi:0408918102
  7. Doyen CM, An W, Angelov D, Bondarenko V, Mietton F, Studitsky VM, Hamiche A, Roeder RG, Bouvet P, Dimitrov S. Mechanism of polymerase II transcription repression by the histone variant macroH2A. Mol Cell Biol. 2006 Feb;26(3):1156-64. PMID:16428466 doi:10.1128/MCB.26.3.1156-1164.2006
  8. Chakravarthy S, Gundimella SK, Caron C, Perche PY, Pehrson JR, Khochbin S, Luger K. Structural characterization of the histone variant macroH2A. Mol Cell Biol. 2005 Sep;25(17):7616-24. PMID:16107708 doi:http://dx.doi.org/25/17/7616
  9. Zhuang M, Calabrese MF, Liu J, Waddell MB, Nourse A, Hammel M, Miller DJ, Walden H, Duda DM, Seyedin SN, Hoggard T, Harper JW, White KP, Schulman BA. Structures of SPOP-substrate complexes: insights into molecular architectures of BTB-Cul3 ubiquitin ligases. Mol Cell. 2009 Oct 9;36(1):39-50. PMID:19818708 doi:10.1016/j.molcel.2009.09.022

3hsv, resolution 1.43Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA