3hsn: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
<StructureSection load='3hsn' size='340' side='right'caption='[[3hsn]], [[Resolution|resolution]] 1.91Å' scene=''> | <StructureSection load='3hsn' size='340' side='right'caption='[[3hsn]], [[Resolution|resolution]] 1.91Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[3hsn]] is a 2 chain structure with sequence from [ | <table><tr><td colspan='2'>[[3hsn]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Buffalo_rat Buffalo rat]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3HSN OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3HSN FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ACT:ACETATE+ION'>ACT</scene>, <scene name='pdbligand=CMO:CARBON+MONOXIDE'>CMO</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=H4B:5,6,7,8-TETRAHYDROBIOPTERIN'>H4B</scene>, <scene name='pdbligand=HAR:N-OMEGA-HYDROXY-L-ARGININE'>HAR</scene>, <scene name='pdbligand=HEM:PROTOPORPHYRIN+IX+CONTAINING+FE'>HEM</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ACT:ACETATE+ION'>ACT</scene>, <scene name='pdbligand=CMO:CARBON+MONOXIDE'>CMO</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=H4B:5,6,7,8-TETRAHYDROBIOPTERIN'>H4B</scene>, <scene name='pdbligand=HAR:N-OMEGA-HYDROXY-L-ARGININE'>HAR</scene>, <scene name='pdbligand=HEM:PROTOPORPHYRIN+IX+CONTAINING+FE'>HEM</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | ||
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3hso|3hso]], [[3hsp|3hsp]]</td></tr> | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[3hso|3hso]], [[3hsp|3hsp]]</div></td></tr> | ||
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">Nos1, Bnos ([ | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">Nos1, Bnos ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=10116 Buffalo rat])</td></tr> | ||
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[ | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Nitric-oxide_synthase_(NADPH_dependent) Nitric-oxide synthase (NADPH dependent)], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.14.13.39 1.14.13.39] </span></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3hsn FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3hsn OCA], [https://pdbe.org/3hsn PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3hsn RCSB], [https://www.ebi.ac.uk/pdbsum/3hsn PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3hsn ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
[[ | [[https://www.uniprot.org/uniprot/NOS1_RAT NOS1_RAT]] Produces nitric oxide (NO) which is a messenger molecule with diverse functions throughout the body. In the brain and peripheral nervous system, NO displays many properties of a neurotransmitter. Inhibitory transmitter for non-adrenergic and non-cholinergic nerves in the colorectum. Probably has nitrosylase activity and mediates cysteine S-nitrosylation of cytoplasmic target proteins such SRR. Inhibitory transmitter for non-adrenergic and non-cholinergic nerves in the colorectum. | ||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Line 33: | Line 33: | ||
==See Also== | ==See Also== | ||
*[[Nitric Oxide Synthase|Nitric Oxide Synthase]] | *[[Nitric Oxide Synthase 3D structures|Nitric Oxide Synthase 3D structures]] | ||
== References == | == References == | ||
<references/> | <references/> |
Revision as of 14:56, 30 March 2022
Ternary structure of neuronal nitric oxide synthase with NHA and CO boundTernary structure of neuronal nitric oxide synthase with NHA and CO bound
Structural highlights
Function[NOS1_RAT] Produces nitric oxide (NO) which is a messenger molecule with diverse functions throughout the body. In the brain and peripheral nervous system, NO displays many properties of a neurotransmitter. Inhibitory transmitter for non-adrenergic and non-cholinergic nerves in the colorectum. Probably has nitrosylase activity and mediates cysteine S-nitrosylation of cytoplasmic target proteins such SRR. Inhibitory transmitter for non-adrenergic and non-cholinergic nerves in the colorectum. Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe X-ray structures of neuronal nitric oxide synthase (nNOS) with N(omega)-hydroxy-l-arginine (l-NHA) and CO (or NO) bound have been determined at 1.91-2.2 A resolution. Microspectrophotometric techniques confirmed reduced redox state and the status of diatomic ligand complexes during X-ray diffraction data collection. The structure of nNOS-NHA-NO, a close mimic to the dioxygen complex, provides a picture of the potential interactions between the heme-bound diatomic ligand, substrate l-NHA, and the surrounding protein and solvent structure environment. The OH group of l-NHA in the X-ray structures deviates from the plane of the guanidinium moiety substantially, indicating that the OH-bearing, protonated guanidine N(omega) nitrogen of l-NHA has substantial sp(3) hybridization character. This nitrogen geometry, different from that of the guanidinium N(omega) nitrogen of l-arginine, allows a hydrogen bond to be donated to the proximal oxygen of the heme-bound dioxygen complex, thus preventing cleavage of the O-O bond. Instead, it favors the stabilization of the ferric-hydroperoxy intermediate, Fe(3+)-OOH(-), which serves as the active oxidant in the conversion of l-NHA to NO and citrulline in the second reaction of the NOS. Single Crystal Structural and Absorption Spectral Characterizations of Nitric Oxide Synthase Complexed with N(omega)-Hydroxy-l-arginine and Diatomic Ligands (,).,Doukov T, Li H, Soltis M, Poulos TL Biochemistry. 2009 Oct 9. PMID:19791770[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|