7odo: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:


==Neisseria gonorrhoeae transaldolase at 0.27 MGy dose==
==Neisseria gonorrhoeae transaldolase at 0.27 MGy dose==
<StructureSection load='7odo' size='340' side='right'caption='[[7odo]]' scene=''>
<StructureSection load='7odo' size='340' side='right'caption='[[7odo]], [[Resolution|resolution]] 1.40&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7ODO OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7ODO FirstGlance]. <br>
<table><tr><td colspan='2'>[[7odo]] is a 1 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7ODO OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7ODO FirstGlance]. <br>
</td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7odo FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7odo OCA], [https://pdbe.org/7odo PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7odo RCSB], [https://www.ebi.ac.uk/pdbsum/7odo PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7odo ProSAT]</span></td></tr>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CIT:CITRIC+ACID'>CIT</scene></td></tr>
<tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=CSO:S-HYDROXYCYSTEINE'>CSO</scene></td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Transaldolase Transaldolase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.2.1.2 2.2.1.2] </span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7odo FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7odo OCA], [https://pdbe.org/7odo PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7odo RCSB], [https://www.ebi.ac.uk/pdbsum/7odo PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7odo ProSAT]</span></td></tr>
</table>
</table>
== Function ==
[[https://www.uniprot.org/uniprot/A0A1D3FXY0_NEIGO A0A1D3FXY0_NEIGO]] Transaldolase is important for the balance of metabolites in the pentose-phosphate pathway.[ARBA:ARBA00003518][HAMAP-Rule:MF_00493]
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
We recently reported the discovery of a lysine-cysteine redox switch in proteins with a covalent nitrogen-oxygen-sulfur (NOS) bridge. Here, a systematic survey of the whole protein structure database discloses that NOS bridges are ubiquitous redox switches in proteins of all domains of life and are found in diverse structural motifs and chemical variants. In several instances, lysines are observed in simultaneous linkage with two cysteines, forming a sulfur-oxygen-nitrogen-oxygen-sulfur (SONOS) bridge with a trivalent nitrogen, which constitutes an unusual native branching cross-link. In many proteins, the NOS switch contains a functionally essential lysine with direct roles in enzyme catalysis or binding of substrates, DNA or effectors, linking lysine chemistry and redox biology as a regulatory principle. NOS/SONOS switches are frequently found in proteins from human and plant pathogens, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and also in many human proteins with established roles in gene expression, redox signaling and homeostasis in physiological and pathophysiological conditions.
Widespread occurrence of covalent lysine-cysteine redox switches in proteins.,Rabe von Pappenheim F, Wensien M, Ye J, Uranga J, Irisarri I, de Vries J, Funk LM, Mata RA, Tittmann K Nat Chem Biol. 2022 Feb 14. pii: 10.1038/s41589-021-00966-5. doi:, 10.1038/s41589-021-00966-5. PMID:35165445<ref>PMID:35165445</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 7odo" style="background-color:#fffaf0;"></div>
== References ==
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: Rabe von Pappenheim F]]
[[Category: Transaldolase]]
[[Category: Tittmann K]]
[[Category: Pappenheim, F Rabe von]]
[[Category: Wensien M]]
[[Category: Tittmann, K]]
[[Category: Wensien, M]]
[[Category: Cross-link]]
[[Category: Regulation]]
[[Category: Transferase]]

Revision as of 10:30, 2 March 2022

Neisseria gonorrhoeae transaldolase at 0.27 MGy doseNeisseria gonorrhoeae transaldolase at 0.27 MGy dose

Structural highlights

7odo is a 1 chain structure. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:
NonStd Res:
Activity:Transaldolase, with EC number 2.2.1.2
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

[A0A1D3FXY0_NEIGO] Transaldolase is important for the balance of metabolites in the pentose-phosphate pathway.[ARBA:ARBA00003518][HAMAP-Rule:MF_00493]

Publication Abstract from PubMed

We recently reported the discovery of a lysine-cysteine redox switch in proteins with a covalent nitrogen-oxygen-sulfur (NOS) bridge. Here, a systematic survey of the whole protein structure database discloses that NOS bridges are ubiquitous redox switches in proteins of all domains of life and are found in diverse structural motifs and chemical variants. In several instances, lysines are observed in simultaneous linkage with two cysteines, forming a sulfur-oxygen-nitrogen-oxygen-sulfur (SONOS) bridge with a trivalent nitrogen, which constitutes an unusual native branching cross-link. In many proteins, the NOS switch contains a functionally essential lysine with direct roles in enzyme catalysis or binding of substrates, DNA or effectors, linking lysine chemistry and redox biology as a regulatory principle. NOS/SONOS switches are frequently found in proteins from human and plant pathogens, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and also in many human proteins with established roles in gene expression, redox signaling and homeostasis in physiological and pathophysiological conditions.

Widespread occurrence of covalent lysine-cysteine redox switches in proteins.,Rabe von Pappenheim F, Wensien M, Ye J, Uranga J, Irisarri I, de Vries J, Funk LM, Mata RA, Tittmann K Nat Chem Biol. 2022 Feb 14. pii: 10.1038/s41589-021-00966-5. doi:, 10.1038/s41589-021-00966-5. PMID:35165445[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Rabe von Pappenheim F, Wensien M, Ye J, Uranga J, Irisarri I, de Vries J, Funk LM, Mata RA, Tittmann K. Widespread occurrence of covalent lysine-cysteine redox switches in proteins. Nat Chem Biol. 2022 Feb 14. pii: 10.1038/s41589-021-00966-5. doi:, 10.1038/s41589-021-00966-5. PMID:35165445 doi:http://dx.doi.org/10.1038/s41589-021-00966-5

7odo, resolution 1.40Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA