7low: Difference between revisions

No edit summary
No edit summary
Line 1: Line 1:


==S-adenosylmethionine synthetase==
==S-adenosylmethionine synthetase==
<StructureSection load='7low' size='340' side='right'caption='[[7low]]' scene=''>
<StructureSection load='7low' size='340' side='right'caption='[[7low]], [[Resolution|resolution]] 2.39&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7LOW OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7LOW FirstGlance]. <br>
<table><tr><td colspan='2'>[[7low]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli_908573 Escherichia coli 908573]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7LOW OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7LOW FirstGlance]. <br>
</td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7low FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7low OCA], [https://pdbe.org/7low PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7low RCSB], [https://www.ebi.ac.uk/pdbsum/7low PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7low ProSAT]</span></td></tr>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene>, <scene name='pdbligand=POP:PYROPHOSPHATE+2-'>POP</scene></td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">metK, HMPREF1611_00479 ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=1268998 Escherichia coli 908573])</td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Methionine_adenosyltransferase Methionine adenosyltransferase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.5.1.6 2.5.1.6] </span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7low FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7low OCA], [https://pdbe.org/7low PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7low RCSB], [https://www.ebi.ac.uk/pdbsum/7low PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7low ProSAT]</span></td></tr>
</table>
</table>
== Function ==
[[https://www.uniprot.org/uniprot/V0ZE41_ECOLX V0ZE41_ECOLX]] Catalyzes the formation of S-adenosylmethionine (AdoMet) from methionine and ATP. The overall synthetic reaction is composed of two sequential steps, AdoMet formation and the subsequent tripolyphosphate hydrolysis which occurs prior to release of AdoMet from the enzyme.[HAMAP-Rule:MF_00086]
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Protein conformational changes can facilitate the binding of noncognate substrates and underlying promiscuous activities. However, the contribution of substrate conformational dynamics to this process is comparatively poorly understood. Here, we analyze human (hMAT2A) and Escherichia coli (eMAT) methionine adenosyltransferases that have identical active sites but different substrate specificity. In the promiscuous hMAT2A, noncognate substrates bind in a stable conformation to allow catalysis. In contrast, noncognate substrates sample stable productive binding modes less frequently in eMAT owing to altered mobility in the enzyme active site. Different cellular concentrations of substrates likely drove the evolutionary divergence of substrate specificity in these orthologues. The observation of catalytic promiscuity in hMAT2A led to the detection of a new human metabolite, methyl thioguanosine, that is produced at elevated levels in a cancer cell line. This work establishes that identical active sites can result in different substrate specificity owing to the effects of substrate and enzyme dynamics.
Substrate Dynamics Contribute to Enzymatic Specificity in Human and Bacterial Methionine Adenosyltransferases.,Gade M, Tan LL, Damry AM, Sandhu M, Brock JS, Delaney A, Villar-Briones A, Jackson CJ, Laurino P JACS Au. 2021 Nov 19;1(12):2349-2360. doi: 10.1021/jacsau.1c00464. eCollection, 2021 Dec 27. PMID:34977903<ref>PMID:34977903</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 7low" style="background-color:#fffaf0;"></div>
== References ==
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Escherichia coli 908573]]
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: Jackson CJ]]
[[Category: Methionine adenosyltransferase]]
[[Category: Tan LL]]
[[Category: Jackson, C J]]
[[Category: Tan, L L]]
[[Category: S-adenosylmethionine synthetase]]
[[Category: Transferase]]

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA