3eys: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
<StructureSection load='3eys' size='340' side='right'caption='[[3eys]], [[Resolution|resolution]] 1.95Å' scene=''> | <StructureSection load='3eys' size='340' side='right'caption='[[3eys]], [[Resolution|resolution]] 1.95Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[3eys]] is a 3 chain structure with sequence from [ | <table><tr><td colspan='2'>[[3eys]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Lk3_transgenic_mice Lk3 transgenic mice]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3EYS OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3EYS FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene></td></tr> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene></td></tr> | ||
<tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=PCA:PYROGLUTAMIC+ACID'>PCA</scene>, <scene name='pdbligand=YCM:S-(2-AMINO-2-OXOETHYL)-L-CYSTEINE'>YCM</scene></td></tr> | <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=PCA:PYROGLUTAMIC+ACID'>PCA</scene>, <scene name='pdbligand=YCM:S-(2-AMINO-2-OXOETHYL)-L-CYSTEINE'>YCM</scene></td></tr> | ||
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3eyu|3eyu]]</td></tr> | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[3eyu|3eyu]]</div></td></tr> | ||
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">Igk-C ([ | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">Igk-C ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=10090 LK3 transgenic mice])</td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3eys FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3eys OCA], [https://pdbe.org/3eys PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3eys RCSB], [https://www.ebi.ac.uk/pdbsum/3eys PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3eys ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
Line 32: | Line 32: | ||
==See Also== | ==See Also== | ||
*[[Antibody 3D structures|Antibody 3D structures]] | *[[Antibody 3D structures|Antibody 3D structures]] | ||
*[[3D structures of non-human antibody|3D structures of non-human antibody]] | |||
== References == | == References == | ||
<references/> | <references/> |
Revision as of 12:19, 23 February 2022
PFA1 Fab fragment complexed with pyro-Glu3-A-Beta (3-8)PFA1 Fab fragment complexed with pyro-Glu3-A-Beta (3-8)
Structural highlights
Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedPassive immunotherapy (PI) is being explored as a potential therapeutic against Alzheimer's disease. The most promising antibodies (Abs) used in PI target the EFRH motif of the Abeta N-terminus. The monoclonal anti-Abeta Ab PFA1 recognizes the EFRH epitope of Abeta. PFA1 has a high affinity for Abeta fibrils and protofibrils (0.1 nM), as well as good affinity for Abeta monomers (20 nM). However, PFA1 binds the toxic N-terminally modified pyro-glutamate peptide pyro-Glu3-Abeta with a 77-fold loss in affinity compared to the WT Abeta(1-8). Furthermore, our earlier work illustrated PFA-1's potential for cross-reactivity. The receptor tyrosine kinaseRor2 which plays a role in skeletal and bone formation possesses the EFRH sequence. In fact, the PFA1 Fab binds the Ror2 peptide REEFRHEA with a 3-fold enhancement over WT Abeta(1-8). In this paper, the crystal structures of the hybridoma-derived PFA1 Fab in complex with pyro-Glu3-Abetapeptide and with a cross-reacting peptide from Ror2 have been determined at resolutions of 1.95 and 2.7 A, respectively. As with wild type Abeta, these peptides bind to the Fab via a combination of charge- and shape-complementarity, hydrogen bonding, and hydrophobic interactions. Comparison of the structures of the four peptides Abeta(1-8), Grip1, pyro-Glu3-Abeta and Ror2 in complex with PFA-1 show that the greatest conformational flexibility occur at residues 2-3 and 8 of the peptide. These structures provide a molecular basis of the specificity tolerance of PFA1, and its ability to recognize Abeta N-terminal heterogeneity. The structures provide clues to improving mAb specificity and affinity for pyro-Glutamate Abeta. THE X-RAY STRUCTURES OF AMYLOID BETA-RELATED PEPTIDES COMPLEXED TO ANTIBODIES.,Gardberg AS, Dice L, Pridgen K, Ko J, Patterson P, Ou S, Wetzel R, Dealwis C Biochemistry. 2009 Apr 22. PMID:19385664[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|