1gf3: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
[[Image:1gf3.jpg|left|200px]] | [[Image:1gf3.jpg|left|200px]] | ||
<!-- | |||
The line below this paragraph, containing "STRUCTURE_1gf3", creates the "Structure Box" on the page. | |||
You may change the PDB parameter (which sets the PDB file loaded into the applet) | |||
or the SCENE parameter (which sets the initial scene displayed when the page is loaded), | |||
or leave the SCENE parameter empty for the default display. | |||
| | --> | ||
| | {{STRUCTURE_1gf3| PDB=1gf3 | SCENE= }} | ||
}} | |||
'''BURIED POLAR MUTANT HUMAN LYSOZYME''' | '''BURIED POLAR MUTANT HUMAN LYSOZYME''' | ||
Line 29: | Line 26: | ||
[[Category: Yamagata, Y.]] | [[Category: Yamagata, Y.]] | ||
[[Category: Yutani, K.]] | [[Category: Yutani, K.]] | ||
[[Category: | [[Category: Buried polar]] | ||
[[Category: | [[Category: Stability]] | ||
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Fri May 2 17:29:26 2008'' | |||
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on |
Revision as of 17:29, 2 May 2008
BURIED POLAR MUTANT HUMAN LYSOZYME
OverviewOverview
It has been generally believed that polar residues are usually located on the surface of protein structures. However, there are many polar groups in the interior of the structures in reality. To evaluate the contribution of such buried polar groups to the conformational stability of a protein, nonpolar to polar mutations (L8T, A9S, A32S, I56T, I59T, I59S, A92S, V93T, A96S, V99T, and V100T) in the interior of a human lysozyme were examined. The thermodynamic parameters for denaturation were determined using a differential scanning calorimeter, and the crystal structures were analyzed by X-ray crystallography. If a polar group had a heavy energy cost to be buried, a mutant protein would be remarkably destabilized. However, the stability (Delta G) of the Ala to Ser and Val to Thr mutant human lysozymes was comparable to that of the wild-type protein, suggesting a low-energy penalty of buried polar groups. The structural analysis showed that all polar side chains introduced in the mutant proteins were able to find their hydrogen bond partners, which are ubiquitous in protein structures. The empirical structure-based calculation of stability change (Delta Delta G) [Takano et al. (1999) Biochemistry 38, 12698--12708] revealed that the mutant proteins decreased the hydrophobic effect contributing to the stability (Delta G(HP)), but this destabilization was recovered by the hydrogen bonds newly introduced. The present study shows the favorable contribution of polar groups with hydrogen bonds in the interior of protein molecules to the conformational stability.
About this StructureAbout this Structure
1GF3 is a Single protein structure of sequence from Homo sapiens. Full crystallographic information is available from OCA.
ReferenceReference
Contribution of polar groups in the interior of a protein to the conformational stability., Takano K, Yamagata Y, Yutani K, Biochemistry. 2001 Apr 17;40(15):4853-8. PMID:11294653 Page seeded by OCA on Fri May 2 17:29:26 2008