3ej2: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:


==Crystal structure of inorganic pyrophosphatase from burkholderia pseudomallei with bound 5-amino-1-(4-chlorophenyl)-1h-pyrazole-4-carbonitrile, H32 crystal form==
==Crystal structure of inorganic pyrophosphatase from burkholderia pseudomallei with bound 5-amino-1-(4-chlorophenyl)-1h-pyrazole-4-carbonitrile, H32 crystal form==
<StructureSection load='3ej2' size='340' side='right' caption='[[3ej2]], [[Resolution|resolution]] 2.12&Aring;' scene=''>
<StructureSection load='3ej2' size='340' side='right'caption='[[3ej2]], [[Resolution|resolution]] 2.12&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[3ej2]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Burp1 Burp1]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3EJ2 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3EJ2 FirstGlance]. <br>
<table><tr><td colspan='2'>[[3ej2]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Burp1 Burp1]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3EJ2 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3EJ2 FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=928:5-AMINO-1-(4-CHLOROPHENYL)-1H-PYRAZOLE-4-CARBONITRILE'>928</scene></td></tr>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=928:5-AMINO-1-(4-CHLOROPHENYL)-1H-PYRAZOLE-4-CARBONITRILE'>928</scene></td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3d63|3d63]], [[3eiy|3eiy]], [[3eiz|3eiz]], [[3ej0|3ej0]]</td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[3d63|3d63]], [[3eiy|3eiy]], [[3eiz|3eiz]], [[3ej0|3ej0]]</div></td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">ppa, BURPS1710b_1237 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=320372 BURP1])</td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">ppa, BURPS1710b_1237 ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=320372 BURP1])</td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Inorganic_diphosphatase Inorganic diphosphatase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.6.1.1 3.6.1.1] </span></td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Inorganic_diphosphatase Inorganic diphosphatase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.6.1.1 3.6.1.1] </span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3ej2 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3ej2 OCA], [http://pdbe.org/3ej2 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=3ej2 RCSB], [http://www.ebi.ac.uk/pdbsum/3ej2 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=3ej2 ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3ej2 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3ej2 OCA], [https://pdbe.org/3ej2 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3ej2 RCSB], [https://www.ebi.ac.uk/pdbsum/3ej2 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3ej2 ProSAT]</span></td></tr>
</table>
</table>
== Evolutionary Conservation ==
== Evolutionary Conservation ==
Line 31: Line 31:


==See Also==
==See Also==
*[[Inorganic pyrophosphatase|Inorganic pyrophosphatase]]
*[[Inorganic pyrophosphatase 3D structures|Inorganic pyrophosphatase 3D structures]]
== References ==
== References ==
<references/>
<references/>
Line 38: Line 38:
[[Category: Burp1]]
[[Category: Burp1]]
[[Category: Inorganic diphosphatase]]
[[Category: Inorganic diphosphatase]]
[[Category: Large Structures]]
[[Category: Structural genomic]]
[[Category: Structural genomic]]
[[Category: Bupsa 00023 some]]
[[Category: Bupsa 00023 some]]

Revision as of 14:50, 16 February 2022

Crystal structure of inorganic pyrophosphatase from burkholderia pseudomallei with bound 5-amino-1-(4-chlorophenyl)-1h-pyrazole-4-carbonitrile, H32 crystal formCrystal structure of inorganic pyrophosphatase from burkholderia pseudomallei with bound 5-amino-1-(4-chlorophenyl)-1h-pyrazole-4-carbonitrile, H32 crystal form

Structural highlights

3ej2 is a 1 chain structure with sequence from Burp1. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:
Gene:ppa, BURPS1710b_1237 (BURP1)
Activity:Inorganic diphosphatase, with EC number 3.6.1.1
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

BACKGROUND: The genus Burkholderia includes pathogenic gram-negative bacteria that cause melioidosis, glanders, and pulmonary infections of patients with cancer and cystic fibrosis. Drug resistance has made development of new antimicrobials critical. Many approaches to discovering new antimicrobials, such as structure-based drug design and whole cell phenotypic screens followed by lead refinement, require high-resolution structures of proteins essential to the parasite. METHODOLOGY/PRINCIPAL FINDINGS: We experimentally identified 406 putative essential genes in B. thailandensis, a low-virulence species phylogenetically similar to B. pseudomallei, the causative agent of melioidosis, using saturation-level transposon mutagenesis and next-generation sequencing (Tn-seq). We selected 315 protein products of these genes based on structure-determination criteria, such as excluding very large and/or integral membrane proteins, and entered them into the Seattle Structural Genomics Center for Infection Disease (SSGCID) structure determination pipeline. To maximize structural coverage of these targets, we applied an "ortholog rescue" strategy for those producing insoluble or difficult to crystallize proteins, resulting in the addition of 387 orthologs (or paralogs) from seven other Burkholderia species into the SSGCID pipeline. This structural genomics approach yielded structures from 31 putative essential targets from B. thailandensis, and 25 orthologs from other Burkholderia species, yielding an overall structural coverage for 49 of the 406 essential gene families, with a total of 88 depositions into the Protein Data Bank. Of these, 25 proteins have properties of a potential antimicrobial drug target i.e., no close human homolog, part of an essential metabolic pathway, and a deep binding pocket. We describe the structures of several potential drug targets in detail. CONCLUSIONS/SIGNIFICANCE: This collection of structures, solubility and experimental essentiality data provides a resource for development of drugs against infections and diseases caused by Burkholderia. All expression clones and proteins created in this study are freely available by request.

Combining functional and structural genomics to sample the essential Burkholderia structome.,Baugh L, Gallagher LA, Patrapuvich R, Clifton MC, Gardberg AS, Edwards TE, Armour B, Begley DW, Dieterich SH, Dranow DM, Abendroth J, Fairman JW, Fox D 3rd, Staker BL, Phan I, Gillespie A, Choi R, Nakazawa-Hewitt S, Nguyen MT, Napuli A, Barrett L, Buchko GW, Stacy R, Myler PJ, Stewart LJ, Manoil C, Van Voorhis WC PLoS One. 2013;8(1):e53851. doi: 10.1371/journal.pone.0053851. Epub 2013 Jan 31. PMID:23382856[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Baugh L, Gallagher LA, Patrapuvich R, Clifton MC, Gardberg AS, Edwards TE, Armour B, Begley DW, Dieterich SH, Dranow DM, Abendroth J, Fairman JW, Fox D 3rd, Staker BL, Phan I, Gillespie A, Choi R, Nakazawa-Hewitt S, Nguyen MT, Napuli A, Barrett L, Buchko GW, Stacy R, Myler PJ, Stewart LJ, Manoil C, Van Voorhis WC. Combining functional and structural genomics to sample the essential Burkholderia structome. PLoS One. 2013;8(1):e53851. doi: 10.1371/journal.pone.0053851. Epub 2013 Jan 31. PMID:23382856 doi:http://dx.doi.org/10.1371/journal.pone.0053851

3ej2, resolution 2.12Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA