1alg: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 3: Line 3:
<StructureSection load='1alg' size='340' side='right'caption='[[1alg]], [[NMR_Ensembles_of_Models | 10 NMR models]]' scene=''>
<StructureSection load='1alg' size='340' side='right'caption='[[1alg]], [[NMR_Ensembles_of_Models | 10 NMR models]]' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[1alg]] is a 1 chain structure. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1ALG OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1ALG FirstGlance]. <br>
<table><tr><td colspan='2'>[[1alg]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Synthetic_construct_sequences Synthetic construct sequences]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1ALG OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1ALG FirstGlance]. <br>
</td></tr><tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Glutathione-disulfide_reductase Glutathione-disulfide reductase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.8.1.7 1.8.1.7] </span></td></tr>
</td></tr><tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Glutathione-disulfide_reductase Glutathione-disulfide reductase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.8.1.7 1.8.1.7] </span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1alg FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1alg OCA], [https://pdbe.org/1alg PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1alg RCSB], [https://www.ebi.ac.uk/pdbsum/1alg PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1alg ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1alg FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1alg OCA], [https://pdbe.org/1alg PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1alg RCSB], [https://www.ebi.ac.uk/pdbsum/1alg PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1alg ProSAT]</span></td></tr>
Line 27: Line 27:
[[Category: Glutathione-disulfide reductase]]
[[Category: Glutathione-disulfide reductase]]
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: Synthetic construct sequences]]
[[Category: Becker, K]]
[[Category: Becker, K]]
[[Category: Kalbitzer, H R]]
[[Category: Kalbitzer, H R]]

Revision as of 13:23, 16 February 2022

SOLUTION STRUCTURE OF AN HGR INHIBITOR, NMR, 10 STRUCTURESSOLUTION STRUCTURE OF AN HGR INHIBITOR, NMR, 10 STRUCTURES

Structural highlights

1alg is a 1 chain structure with sequence from Synthetic construct sequences. Full experimental information is available from OCA. For a guided tour on the structure components use FirstGlance.
Activity:Glutathione-disulfide reductase, with EC number 1.8.1.7
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

[GSHR_HUMAN] Maintains high levels of reduced glutathione in the cytosol.

Publication Abstract from PubMed

Human glutathione reductase (GR; which catalyzes the reaction NADPH + GSSG + H+ --> 2 GSH + NADP+) is an obligatory FAD-containing homodimer of known geometry. Native human GR, a potential target of antimalarial and cytostatic agents, cannot be dissociated by dilution or by means of subunit-interface mimetics, similarly to well-studied viral dimeric proteins. However, ab initio folding and/or dimerization of human GR can be inhibited by point mutations or by peptides corresponding to subunit-interface areas, for example synthetic peptide P11, which represents the intersubunit-contact helix H11. The structure of this peptide, which might assist inhibitor design, was solved by high-resolution NMR spectroscopy. Residues 440-453, were found to be alpha helical in the isolated peptide. To quantitate the efficacy of inhibitors such as P11, we developed the following unfolding/reactivation assay. The effects of various guanidine hydrochloride (Gdn/HCl) concentrations were studied by analytical ultracentrifugation. It was shown that human GR denatured by greater than 3 M Gdn/HCl is monomeric and free of FAD. Circular-dichroism experiments at 223 nm indicated a half-life of approximately 20 s at 20 degrees C for the unfolding process. To optimize the reactivation yield, four parameters [protein concentration (x) in the range 0.3-10 microg/ml, cofactor supplementation, temperature (y: 0-32 degrees C), and time (0-72 h)] were varied systematically, and a reactivation score z was given to each constellation of parameters. This type of analysis might be useful to optimize refolding and activation yields for other proteins. For human GR, the highest recovery was found not to occur at one of the corners of the x,y plane, but close to its center. Consequently, the optimal assay conditions for folding and dimerization inhibitors are as follows. The enzyme (at 300 microg/ml) is denatured by 5 M guanidine hydrochloride/5 mM dithiothreitol, then reactivated by dilution to 1 microg/ml at pH 6.9 and 20 degrees C. In the absence of inhibitors, this procedure leads to 70% of the control activity within 8 h. Peptides representing the upper subunit interface (for instance residues 436-478) of human GR were found to inhibit refolding with EC50% values in the micromolar range, whereas fragments from other regions of the protein had no influence on this process. For peptide P11, the EC50% value was 20 microM. In conclusion, hGR, enzyme with a tight intersubunit contact area of 21 nm2, appears to be suitable for studying protein folding, dimerization, and prosthetic-group complexation in the absence and presence of compounds that inhibit these processes. There is a shortage, at least for oligomeric enzymes of eukaryotes, of published systematic studies on protein (re)activation.

Denaturation and reactivation of dimeric human glutathione reductase--an assay for folding inhibitors.,Nordhoff A, Tziatzios C, van den Broek JA, Schott MK, Kalbitzer HR, Becker K, Schubert D, Schirmer RH Eur J Biochem. 1997 Apr 15;245(2):273-82. PMID:9151953[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Nordhoff A, Tziatzios C, van den Broek JA, Schott MK, Kalbitzer HR, Becker K, Schubert D, Schirmer RH. Denaturation and reactivation of dimeric human glutathione reductase--an assay for folding inhibitors. Eur J Biochem. 1997 Apr 15;245(2):273-82. PMID:9151953
Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA