3c8x: Difference between revisions

No edit summary
No edit summary
Line 1: Line 1:


==Crystal structure of the ligand binding domain of human Ephrin A2 (Epha2) receptor protein kinase==
==Crystal structure of the ligand binding domain of human Ephrin A2 (Epha2) receptor protein kinase==
<StructureSection load='3c8x' size='340' side='right' caption='[[3c8x]], [[Resolution|resolution]] 1.95&Aring;' scene=''>
<StructureSection load='3c8x' size='340' side='right'caption='[[3c8x]], [[Resolution|resolution]] 1.95&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[3c8x]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3C8X OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3C8X FirstGlance]. <br>
<table><tr><td colspan='2'>[[3c8x]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3C8X OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3C8X FirstGlance]. <br>
</td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1mqb|1mqb]]</td></tr>
</td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[1mqb|1mqb]]</div></td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">EPHA2, ECK ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">EPHA2, ECK ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Receptor_protein-tyrosine_kinase Receptor protein-tyrosine kinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.10.1 2.7.10.1] </span></td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Receptor_protein-tyrosine_kinase Receptor protein-tyrosine kinase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.10.1 2.7.10.1] </span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3c8x FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3c8x OCA], [http://pdbe.org/3c8x PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=3c8x RCSB], [http://www.ebi.ac.uk/pdbsum/3c8x PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=3c8x ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3c8x FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3c8x OCA], [https://pdbe.org/3c8x PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3c8x RCSB], [https://www.ebi.ac.uk/pdbsum/3c8x PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3c8x ProSAT]</span></td></tr>
</table>
</table>
== Disease ==
== Disease ==
[[http://www.uniprot.org/uniprot/EPHA2_HUMAN EPHA2_HUMAN]] Genetic variations in EPHA2 are the cause of susceptibility to cataract cortical age-related type 2 (ARCC2) [MIM:[http://omim.org/entry/613020 613020]]. A developmental punctate opacity common in the cortex and present in most lenses. The cataract is white or cerulean, increases in number with age, but rarely affects vision.<ref>PMID:19573808</ref> <ref>PMID:19649315</ref>  Defects in EPHA2 are the cause of cataract posterior polar type 1 (CTPP1) [MIM:[http://omim.org/entry/116600 116600]]. A subcapsular opacity, usually disk-shaped, located at the back of the lens. It can have a marked effect on visual acuity.<ref>PMID:19573808</ref> <ref>PMID:19005574</ref> <ref>PMID:19306328</ref> <ref>PMID:22570727</ref>  Note=Overexpressed in several cancer types and promotes malignancy.<ref>PMID:19573808</ref>   
[[https://www.uniprot.org/uniprot/EPHA2_HUMAN EPHA2_HUMAN]] Genetic variations in EPHA2 are the cause of susceptibility to cataract cortical age-related type 2 (ARCC2) [MIM:[https://omim.org/entry/613020 613020]]. A developmental punctate opacity common in the cortex and present in most lenses. The cataract is white or cerulean, increases in number with age, but rarely affects vision.<ref>PMID:19573808</ref> <ref>PMID:19649315</ref>  Defects in EPHA2 are the cause of cataract posterior polar type 1 (CTPP1) [MIM:[https://omim.org/entry/116600 116600]]. A subcapsular opacity, usually disk-shaped, located at the back of the lens. It can have a marked effect on visual acuity.<ref>PMID:19573808</ref> <ref>PMID:19005574</ref> <ref>PMID:19306328</ref> <ref>PMID:22570727</ref>  Note=Overexpressed in several cancer types and promotes malignancy.<ref>PMID:19573808</ref>   
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/EPHA2_HUMAN EPHA2_HUMAN]] Receptor tyrosine kinase which binds promiscuously membrane-bound ephrin-A family ligands residing on adjacent cells, leading to contact-dependent bidirectional signaling into neighboring cells. The signaling pathway downstream of the receptor is referred to as forward signaling while the signaling pathway downstream of the ephrin ligand is referred to as reverse signaling. Activated by the ligand ephrin-A1/EFNA1 regulates migration, integrin-mediated adhesion, proliferation and differentiation of cells. Regulates cell adhesion and differentiation through DSG1/desmoglein-1 and inhibition of the ERK1/ERK2 (MAPK3/MAPK1, respectively) signaling pathway. May also participate in UV radiation-induced apoptosis and have a ligand-independent stimulatory effect on chemotactic cell migration. During development, may function in distinctive aspects of pattern formation and subsequently in development of several fetal tissues. Involved for instance in angiogenesis, in early hindbrain development and epithelial proliferation and branching morphogenesis during mammary gland development. Engaged by the ligand ephrin-A5/EFNA5 may regulate lens fiber cells shape and interactions and be important for lens transparency development and maintenance. With ephrin-A2/EFNA2 may play a role in bone remodeling through regulation of osteoclastogenesis and osteoblastogenesis.<ref>PMID:10655584</ref> <ref>PMID:16236711</ref> <ref>PMID:18339848</ref> <ref>PMID:19573808</ref> <ref>PMID:20679435</ref> <ref>PMID:20861311</ref>   
[[https://www.uniprot.org/uniprot/EPHA2_HUMAN EPHA2_HUMAN]] Receptor tyrosine kinase which binds promiscuously membrane-bound ephrin-A family ligands residing on adjacent cells, leading to contact-dependent bidirectional signaling into neighboring cells. The signaling pathway downstream of the receptor is referred to as forward signaling while the signaling pathway downstream of the ephrin ligand is referred to as reverse signaling. Activated by the ligand ephrin-A1/EFNA1 regulates migration, integrin-mediated adhesion, proliferation and differentiation of cells. Regulates cell adhesion and differentiation through DSG1/desmoglein-1 and inhibition of the ERK1/ERK2 (MAPK3/MAPK1, respectively) signaling pathway. May also participate in UV radiation-induced apoptosis and have a ligand-independent stimulatory effect on chemotactic cell migration. During development, may function in distinctive aspects of pattern formation and subsequently in development of several fetal tissues. Involved for instance in angiogenesis, in early hindbrain development and epithelial proliferation and branching morphogenesis during mammary gland development. Engaged by the ligand ephrin-A5/EFNA5 may regulate lens fiber cells shape and interactions and be important for lens transparency development and maintenance. With ephrin-A2/EFNA2 may play a role in bone remodeling through regulation of osteoclastogenesis and osteoblastogenesis.<ref>PMID:10655584</ref> <ref>PMID:16236711</ref> <ref>PMID:18339848</ref> <ref>PMID:19573808</ref> <ref>PMID:20679435</ref> <ref>PMID:20861311</ref>   
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
Check<jmol>
   <jmolCheckbox>
   <jmolCheckbox>
     <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/c8/3c8x_consurf.spt"</scriptWhenChecked>
     <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/c8/3c8x_consurf.spt"</scriptWhenChecked>
     <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
     <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
     <text>to colour the structure by Evolutionary Conservation</text>
     <text>to colour the structure by Evolutionary Conservation</text>
Line 32: Line 32:
</div>
</div>
<div class="pdbe-citations 3c8x" style="background-color:#fffaf0;"></div>
<div class="pdbe-citations 3c8x" style="background-color:#fffaf0;"></div>
==See Also==
*[[Ephrin receptor 3D structures|Ephrin receptor 3D structures]]
== References ==
== References ==
<references/>
<references/>
Line 37: Line 40:
</StructureSection>
</StructureSection>
[[Category: Human]]
[[Category: Human]]
[[Category: Large Structures]]
[[Category: Receptor protein-tyrosine kinase]]
[[Category: Receptor protein-tyrosine kinase]]
[[Category: Arrowsmith, C H]]
[[Category: Arrowsmith, C H]]

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA