2d07: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 3: Line 3:
<StructureSection load='2d07' size='340' side='right'caption='[[2d07]], [[Resolution|resolution]] 2.10&Aring;' scene=''>
<StructureSection load='2d07' size='340' side='right'caption='[[2d07]], [[Resolution|resolution]] 2.10&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[2d07]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2D07 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2D07 FirstGlance]. <br>
<table><tr><td colspan='2'>[[2d07]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2D07 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2D07 FirstGlance]. <br>
</td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2d07 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2d07 OCA], [http://pdbe.org/2d07 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=2d07 RCSB], [http://www.ebi.ac.uk/pdbsum/2d07 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=2d07 ProSAT]</span></td></tr>
</td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2d07 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2d07 OCA], [https://pdbe.org/2d07 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2d07 RCSB], [https://www.ebi.ac.uk/pdbsum/2d07 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2d07 ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/TDG_HUMAN TDG_HUMAN]] In the DNA of higher eukaryotes, hydrolytic deamination of 5-methylcytosine to thymine leads to the formation of G/T mismatches. This enzyme corrects G/T mispairs to G/C pairs. It is capable of hydrolyzing the carbon-nitrogen bond between the sugar-phosphate backbone of the DNA and a mispaired thymine. In addition to the G/T, it can remove thymine also from C/T and T/T mispairs in the order G/T >> C/T > T/T. It has no detectable activity on apyrimidinic sites and does not catalyze the removal of thymine from A/T pairs or from single-stranded DNA. It can also remove uracil and 5-bromouracil from mispairs with guanine. [[http://www.uniprot.org/uniprot/SUMO2_HUMAN SUMO2_HUMAN]] Ubiquitin-like protein that can be covalently attached to proteins as a monomer or as a lysine-linked polymer. Covalent attachment via an isopeptide bond to its substrates requires prior activation by the E1 complex SAE1-SAE2 and linkage to the E2 enzyme UBE2I, and can be promoted by an E3 ligase such as PIAS1-4, RANBP2 or CBX4. This post-translational modification on lysine residues of proteins plays a crucial role in a number of cellular processes such as nuclear transport, DNA replication and repair, mitosis and signal transduction. Polymeric SUMO2 chains are also susceptible to polyubiquitination which functions as a signal for proteasomal degradation of modified proteins.<ref>PMID:9556629</ref> <ref>PMID:18538659</ref> <ref>PMID:18408734</ref>   
[[https://www.uniprot.org/uniprot/TDG_HUMAN TDG_HUMAN]] In the DNA of higher eukaryotes, hydrolytic deamination of 5-methylcytosine to thymine leads to the formation of G/T mismatches. This enzyme corrects G/T mispairs to G/C pairs. It is capable of hydrolyzing the carbon-nitrogen bond between the sugar-phosphate backbone of the DNA and a mispaired thymine. In addition to the G/T, it can remove thymine also from C/T and T/T mispairs in the order G/T >> C/T > T/T. It has no detectable activity on apyrimidinic sites and does not catalyze the removal of thymine from A/T pairs or from single-stranded DNA. It can also remove uracil and 5-bromouracil from mispairs with guanine. [[https://www.uniprot.org/uniprot/SUMO2_HUMAN SUMO2_HUMAN]] Ubiquitin-like protein that can be covalently attached to proteins as a monomer or as a lysine-linked polymer. Covalent attachment via an isopeptide bond to its substrates requires prior activation by the E1 complex SAE1-SAE2 and linkage to the E2 enzyme UBE2I, and can be promoted by an E3 ligase such as PIAS1-4, RANBP2 or CBX4. This post-translational modification on lysine residues of proteins plays a crucial role in a number of cellular processes such as nuclear transport, DNA replication and repair, mitosis and signal transduction. Polymeric SUMO2 chains are also susceptible to polyubiquitination which functions as a signal for proteasomal degradation of modified proteins.<ref>PMID:9556629</ref> <ref>PMID:18538659</ref> <ref>PMID:18408734</ref>   
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]

Revision as of 13:24, 8 December 2021

Crystal Structure of SUMO-3-modified Thymine-DNA GlycosylaseCrystal Structure of SUMO-3-modified Thymine-DNA Glycosylase

Structural highlights

2d07 is a 2 chain structure with sequence from Human. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

[TDG_HUMAN] In the DNA of higher eukaryotes, hydrolytic deamination of 5-methylcytosine to thymine leads to the formation of G/T mismatches. This enzyme corrects G/T mispairs to G/C pairs. It is capable of hydrolyzing the carbon-nitrogen bond between the sugar-phosphate backbone of the DNA and a mispaired thymine. In addition to the G/T, it can remove thymine also from C/T and T/T mispairs in the order G/T >> C/T > T/T. It has no detectable activity on apyrimidinic sites and does not catalyze the removal of thymine from A/T pairs or from single-stranded DNA. It can also remove uracil and 5-bromouracil from mispairs with guanine. [SUMO2_HUMAN] Ubiquitin-like protein that can be covalently attached to proteins as a monomer or as a lysine-linked polymer. Covalent attachment via an isopeptide bond to its substrates requires prior activation by the E1 complex SAE1-SAE2 and linkage to the E2 enzyme UBE2I, and can be promoted by an E3 ligase such as PIAS1-4, RANBP2 or CBX4. This post-translational modification on lysine residues of proteins plays a crucial role in a number of cellular processes such as nuclear transport, DNA replication and repair, mitosis and signal transduction. Polymeric SUMO2 chains are also susceptible to polyubiquitination which functions as a signal for proteasomal degradation of modified proteins.[1] [2] [3]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Modification of cellular proteins by the small ubiquitin-like modifier SUMO is important in regulating various cellular events. Many different nuclear proteins are targeted by SUMO, and the functional consequences of this modification are diverse. For most proteins, however, the functional and structural consequences of modification by specific SUMO isomers are unclear. Conjugation of SUMO to thymine-DNA glycosylase (TDG) induces the dissociation of TDG from its product DNA. Structure determination of the TDG central region conjugated to SUMO-1 previously suggested a mechanism in which the SUMOylation-induced conformational change in the C-terminal region of TDG releases TDG from tight binding to its product DNA. Here, we have determined the crystal structure of the central region of TDG conjugated to SUMO-3. The overall structure of SUMO-3-conjugated TDG is similar to the previously reported structure of TDG conjugated to SUMO-1, despite the relatively low level of amino acid sequence similarity between SUMO-3 and SUMO-1. The two structures revealed that the sequence of TDG that resembles the SUMO-binding motif (SBM) can form an intermolecular beta-sheet with either SUMO-1 or SUMO-3. Structural comparison with the canonical SBM shows that this SBM-like sequence of TDG retains all of the characteristic interactions of the SBM, indicating sequence diversity in the SBM.

Crystal structure of SUMO-3-modified thymine-DNA glycosylase.,Baba D, Maita N, Jee JG, Uchimura Y, Saitoh H, Sugasawa K, Hanaoka F, Tochio H, Hiroaki H, Shirakawa M J Mol Biol. 2006 May 26;359(1):137-47. Epub 2006 Mar 31. PMID:16626738[4]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Kamitani T, Kito K, Nguyen HP, Fukuda-Kamitani T, Yeh ET. Characterization of a second member of the sentrin family of ubiquitin-like proteins. J Biol Chem. 1998 May 1;273(18):11349-53. PMID:9556629
  2. Meulmeester E, Kunze M, Hsiao HH, Urlaub H, Melchior F. Mechanism and consequences for paralog-specific sumoylation of ubiquitin-specific protease 25. Mol Cell. 2008 Jun 6;30(5):610-9. doi: 10.1016/j.molcel.2008.03.021. PMID:18538659 doi:10.1016/j.molcel.2008.03.021
  3. Tatham MH, Geoffroy MC, Shen L, Plechanovova A, Hattersley N, Jaffray EG, Palvimo JJ, Hay RT. RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nat Cell Biol. 2008 May;10(5):538-46. doi: 10.1038/ncb1716. Epub 2008 Apr 13. PMID:18408734 doi:10.1038/ncb1716
  4. Baba D, Maita N, Jee JG, Uchimura Y, Saitoh H, Sugasawa K, Hanaoka F, Tochio H, Hiroaki H, Shirakawa M. Crystal structure of SUMO-3-modified thymine-DNA glycosylase. J Mol Biol. 2006 May 26;359(1):137-47. Epub 2006 Mar 31. PMID:16626738 doi:10.1016/j.jmb.2006.03.036

2d07, resolution 2.10Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA