2khx: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
<StructureSection load='2khx' size='340' side='right'caption='[[2khx]], [[NMR_Ensembles_of_Models | 10 NMR models]]' scene=''> | <StructureSection load='2khx' size='340' side='right'caption='[[2khx]], [[NMR_Ensembles_of_Models | 10 NMR models]]' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[2khx]] is a 1 chain structure with sequence from [ | <table><tr><td colspan='2'>[[2khx]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Human Human]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2KHX OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2KHX FirstGlance]. <br> | ||
</td></tr><tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">RNASEN, RN3, RNASE3L ([ | </td></tr><tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">RNASEN, RN3, RNASE3L ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr> | ||
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[ | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Ribonuclease_III Ribonuclease III], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.1.26.3 3.1.26.3] </span></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2khx FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2khx OCA], [https://pdbe.org/2khx PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2khx RCSB], [https://www.ebi.ac.uk/pdbsum/2khx PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2khx ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
[[ | [[https://www.uniprot.org/uniprot/RNC_HUMAN RNC_HUMAN]] Ribonuclease III double-stranded (ds) RNA-specific endoribonuclease that is involved in the initial step of microRNA (miRNA) biogenesis. Component of the microprocessor complex that is required to process primary miRNA transcripts (pri-miRNAs) to release precursor miRNA (pre-miRNA) in the nucleus. Within the microprocessor complex, DROSHA cleaves the 3' and 5' strands of a stem-loop in pri-miRNAs (processing center 11 bp from the dsRNA-ssRNA junction) to release hairpin-shaped pre-miRNAs that are subsequently cut by the cytoplasmic DICER to generate mature miRNAs. Involved also in pre-rRNA processing. Cleaves double-strand RNA and does not cleave single-strand RNA. Involved in the formation of GW bodies.<ref>PMID:10948199</ref> <ref>PMID:14508493</ref> <ref>PMID:15589161</ref> <ref>PMID:15574589</ref> <ref>PMID:15531877</ref> <ref>PMID:15565168</ref> <ref>PMID:16751099</ref> <ref>PMID:16906129</ref> <ref>PMID:17159994</ref> | ||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Line 32: | Line 32: | ||
==See Also== | ==See Also== | ||
*[[Ribonuclease 3D structures|Ribonuclease 3D structures]] | *[[Ribonuclease 3D structures|Ribonuclease 3D structures]] | ||
== References == | == References == | ||
<references/> | <references/> |
Revision as of 10:05, 1 December 2021
Drosha double-stranded RNA binding motifDrosha double-stranded RNA binding motif
Structural highlights
Function[RNC_HUMAN] Ribonuclease III double-stranded (ds) RNA-specific endoribonuclease that is involved in the initial step of microRNA (miRNA) biogenesis. Component of the microprocessor complex that is required to process primary miRNA transcripts (pri-miRNAs) to release precursor miRNA (pre-miRNA) in the nucleus. Within the microprocessor complex, DROSHA cleaves the 3' and 5' strands of a stem-loop in pri-miRNAs (processing center 11 bp from the dsRNA-ssRNA junction) to release hairpin-shaped pre-miRNAs that are subsequently cut by the cytoplasmic DICER to generate mature miRNAs. Involved also in pre-rRNA processing. Cleaves double-strand RNA and does not cleave single-strand RNA. Involved in the formation of GW bodies.[1] [2] [3] [4] [5] [6] [7] [8] [9] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedBACKGROUND: Drosha is a nuclear RNase III enzyme that initiates processing of regulatory microRNA. Together with partner protein DiGeorge syndrome critical region 8 (DGCR8), it forms the Microprocessor complex, which cleaves precursor transcripts called primary microRNA to produce hairpin precursor microRNA. In addition to two RNase III catalytic domains, Drosha contains a C-terminal double-stranded RNA-binding domain (dsRBD). To gain insight into the function of this domain, we determined the nuclear magnetic resonance (NMR) solution structure. RESULTS: We report here the solution structure of the dsRBD from Drosha (Drosha-dsRBD). The alphabetabetabetaalpha fold is similar to other dsRBD structures. A unique extended loop distinguishes this domain from other dsRBDs of known structure. CONCLUSIONS: Despite uncertainties about RNA-binding properties of the Drosha-dsRBD, its structure suggests it retains RNA-binding features. We propose that this domain may contribute to substrate recognition in the Drosha-DGCR8 Microprocessor complex. Solution structure of the Drosha double-stranded RNA-binding domain.,Mueller GA, Miller MT, Derose EF, Ghosh M, London RE, Hall TM Silence. 2010 Jan 12;1(1):2. PMID:20226070[10] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|