2i1f: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
<StructureSection load='2i1f' size='340' side='right'caption='[[2i1f]], [[NMR_Ensembles_of_Models | 20 NMR models]]' scene=''> | <StructureSection load='2i1f' size='340' side='right'caption='[[2i1f]], [[NMR_Ensembles_of_Models | 20 NMR models]]' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[2i1f]] is a 1 chain structure. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2I1F OCA]. For a <b>guided tour on the structure components</b> use [ | <table><tr><td colspan='2'>[[2i1f]] is a 1 chain structure. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2I1F OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2I1F FirstGlance]. <br> | ||
</td></tr><tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=NH2:AMINO+GROUP'>NH2</scene></td></tr> | </td></tr><tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=NH2:AMINO+GROUP'>NH2</scene></td></tr> | ||
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2i1d|2i1d]], [[2i1e|2i1e]], [[2i1g|2i1g]], [[2i1h|2i1h]], [[2i1i|2i1i]]</td></tr> | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[2i1d|2i1d]], [[2i1e|2i1e]], [[2i1g|2i1g]], [[2i1h|2i1h]], [[2i1i|2i1i]]</div></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2i1f FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2i1f OCA], [https://pdbe.org/2i1f PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2i1f RCSB], [https://www.ebi.ac.uk/pdbsum/2i1f PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2i1f ProSAT]</span></td></tr> | ||
</table> | </table> | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> |
Revision as of 18:42, 3 November 2021
DPC micelle-bound NMR structures of Tritrp3DPC micelle-bound NMR structures of Tritrp3
Structural highlights
Publication Abstract from PubMedTritrpticin is a member of the cathelicidin family of antimicrobial peptides. Starting from its native sequence (VRRFPWWWPFLRR), eight synthetic peptide analogs were studied to investigate the roles of specific residues in its biological and structural properties. This included amidation of the C-terminus paired with substitutions of its cationic and Phe residues, as well as the Pro residues that are important for its two-turn micelle-bound structure. These analogs were determined to have a significant antimicrobial potency. In contrast, two other peptide analogs, those with the three Trp residues substituted with either Phe or Tyr residues are not highly membrane perturbing, as determined by leakage and flip-flop assays using fluorescence spectroscopy. Nevertheless the Phe analog has a high activity; this suggests an intracellular mechanism for antimicrobial activity that may be part of the overall mechanism of action of native tritrpticin as a complement to membrane perturbation. NMR experiments of these two Trp-substituted peptides showed the presence of multiple conformers. The structures of the six remaining Trp-containing analogs bound to dodecylphosphocholine micelles showed major, well-defined conformations. These peptides are membrane disruptive and show a wide range in hemolytic activity. Their micelle-bound structures either retain the typical turn-turn structure of native tritrpticin or have an extended alpha-helix. This work demonstrates that closely related antimicrobial peptides can often have remarkably altered properties with complex influences on their biological activities. Structure-function analysis of tritrpticin analogs: potential relationships between antimicrobial activities, model membrane interactions, and their micelle-bound NMR structures.,Schibli DJ, Nguyen LT, Kernaghan SD, Rekdal O, Vogel HJ Biophys J. 2006 Dec 15;91(12):4413-26. Epub 2006 Sep 22. PMID:16997878[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|