3bea: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==cFMS tyrosine kinase (tie2 KID) in complex with a pyrimidinopyridone inhibitor== | ==cFMS tyrosine kinase (tie2 KID) in complex with a pyrimidinopyridone inhibitor== | ||
<StructureSection load='3bea' size='340' side='right' caption='[[3bea]], [[Resolution|resolution]] 2.02Å' scene=''> | <StructureSection load='3bea' size='340' side='right'caption='[[3bea]], [[Resolution|resolution]] 2.02Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[3bea]] is a 1 chain structure with sequence from [ | <table><tr><td colspan='2'>[[3bea]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3BEA OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3BEA FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=IXH:8-(2,3-DIHYDRO-1H-INDEN-5-YL)-2-({4-[(3R,5S)-3,5-DIMETHYLPIPERAZIN-1-YL]PHENYL}AMINO)-5-OXO-5,8-DIHYDROPYRIDO[2,3-D]PYRIMIDINE-6-CARBOXAMIDE'>IXH</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=IXH:8-(2,3-DIHYDRO-1H-INDEN-5-YL)-2-({4-[(3R,5S)-3,5-DIMETHYLPIPERAZIN-1-YL]PHENYL}AMINO)-5-OXO-5,8-DIHYDROPYRIDO[2,3-D]PYRIMIDINE-6-CARBOXAMIDE'>IXH</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | ||
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2i0v|2i0v]], [[2i1m|2i1m]], [[2i0y|2i0y]], [[2ogv|2ogv]]</td></tr> | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[2i0v|2i0v]], [[2i1m|2i1m]], [[2i0y|2i0y]], [[2ogv|2ogv]]</div></td></tr> | ||
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">CSF1R, FMS ([ | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">CSF1R, FMS ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 Homo sapiens])</td></tr> | ||
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[ | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Receptor_protein-tyrosine_kinase Receptor protein-tyrosine kinase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.10.1 2.7.10.1] </span></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3bea FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3bea OCA], [https://pdbe.org/3bea PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3bea RCSB], [https://www.ebi.ac.uk/pdbsum/3bea PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3bea ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Disease == | == Disease == | ||
[[ | [[https://www.uniprot.org/uniprot/CSF1R_HUMAN CSF1R_HUMAN]] Note=Aberrant expression of CSF1 or CSF1R can promote cancer cell proliferation, invasion and formation of metastases. Overexpression of CSF1 or CSF1R is observed in a significant percentage of breast, ovarian, prostate, and endometrial cancers.<ref>PMID:15117969</ref> <ref>PMID:16648572</ref> <ref>PMID:17121910</ref> <ref>PMID:18814279</ref> <ref>PMID:19934330</ref> <ref>PMID:16337366</ref> Note=Aberrant expression of CSF1 or CSF1R may play a role in inflammatory diseases, such as rheumatoid arthritis, glomerulonephritis, atherosclerosis, and allograft rejection.<ref>PMID:15117969</ref> <ref>PMID:16648572</ref> <ref>PMID:17121910</ref> <ref>PMID:18814279</ref> <ref>PMID:19934330</ref> <ref>PMID:16337366</ref> Defects in CSF1R are the cause of leukoencephalopathy, diffuse hereditary, with spheroids (HDLS) [MIM:[https://omim.org/entry/221820 221820]]. An autosomal dominant adult-onset rapidly progressive neurodegenerative disorder characterized by variable behavioral, cognitive, and motor changes. Patients often die of dementia within 6 years of onset. Brain imaging shows patchy abnormalities in the cerebral white matter, predominantly affecting the frontal and parietal lobes.<ref>PMID:15117969</ref> <ref>PMID:16648572</ref> <ref>PMID:17121910</ref> <ref>PMID:18814279</ref> <ref>PMID:19934330</ref> <ref>PMID:16337366</ref> <ref>PMID:22197934</ref> | ||
== Function == | == Function == | ||
[[ | [[https://www.uniprot.org/uniprot/CSF1R_HUMAN CSF1R_HUMAN]] Tyrosine-protein kinase that acts as cell-surface receptor for CSF1 and IL34 and plays an essential role in the regulation of survival, proliferation and differentiation of hematopoietic precursor cells, especially mononuclear phagocytes, such as macrophages and monocytes. Promotes the release of proinflammatory chemokines in response to IL34 and CSF1, and thereby plays an important role in innate immunity and in inflammatory processes. Plays an important role in the regulation of osteoclast proliferation and differentiation, the regulation of bone resorption, and is required for normal bone and tooth development. Required for normal male and female fertility, and for normal development of milk ducts and acinar structures in the mammary gland during pregnancy. Promotes reorganization of the actin cytoskeleton, regulates formation of membrane ruffles, cell adhesion and cell migration, and promotes cancer cell invasion. Activates several signaling pathways in response to ligand binding. Phosphorylates PIK3R1, PLCG2, GRB2, SLA2 and CBL. Activation of PLCG2 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate, that then lead to the activation of protein kinase C family members, especially PRKCD. Phosphorylation of PIK3R1, the regulatory subunit of phosphatidylinositol 3-kinase, leads to activation of the AKT1 signaling pathway. Activated CSF1R also mediates activation of the MAP kinases MAPK1/ERK2 and/or MAPK3/ERK1, and of the SRC family kinases SRC, FYN and YES1. Activated CSF1R transmits signals both via proteins that directly interact with phosphorylated tyrosine residues in its intracellular domain, or via adapter proteins, such as GRB2. Promotes activation of STAT family members STAT3, STAT5A and/or STAT5B. Promotes tyrosine phosphorylation of SHC1 and INPP5D/SHIP-1. Receptor signaling is down-regulated by protein phosphatases, such as INPP5D/SHIP-1, that dephosphorylate the receptor and its downstream effectors, and by rapid internalization of the activated receptor.<ref>PMID:7683918</ref> <ref>PMID:12882960</ref> <ref>PMID:15117969</ref> <ref>PMID:16648572</ref> <ref>PMID:17121910</ref> <ref>PMID:16170366</ref> <ref>PMID:18467591</ref> <ref>PMID:18814279</ref> <ref>PMID:19934330</ref> <ref>PMID:20489731</ref> <ref>PMID:20829061</ref> <ref>PMID:20504948</ref> <ref>PMID:16337366</ref> <ref>PMID:19193011</ref> | ||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Check<jmol> | Check<jmol> | ||
<jmolCheckbox> | <jmolCheckbox> | ||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/be/3bea_consurf.spt"</scriptWhenChecked> | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/be/3bea_consurf.spt"</scriptWhenChecked> | ||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
Line 33: | Line 33: | ||
</div> | </div> | ||
<div class="pdbe-citations 3bea" style="background-color:#fffaf0;"></div> | <div class="pdbe-citations 3bea" style="background-color:#fffaf0;"></div> | ||
==See Also== | |||
*[[Colony-stimulating factor receptor 3D structures|Colony-stimulating factor receptor 3D structures]] | |||
== References == | == References == | ||
<references/> | <references/> | ||
Line 38: | Line 41: | ||
</StructureSection> | </StructureSection> | ||
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
[[Category: Large Structures]] | |||
[[Category: Receptor protein-tyrosine kinase]] | [[Category: Receptor protein-tyrosine kinase]] | ||
[[Category: Schubert, C]] | [[Category: Schubert, C]] |
Revision as of 21:56, 20 October 2021
cFMS tyrosine kinase (tie2 KID) in complex with a pyrimidinopyridone inhibitorcFMS tyrosine kinase (tie2 KID) in complex with a pyrimidinopyridone inhibitor
Structural highlights
Disease[CSF1R_HUMAN] Note=Aberrant expression of CSF1 or CSF1R can promote cancer cell proliferation, invasion and formation of metastases. Overexpression of CSF1 or CSF1R is observed in a significant percentage of breast, ovarian, prostate, and endometrial cancers.[1] [2] [3] [4] [5] [6] Note=Aberrant expression of CSF1 or CSF1R may play a role in inflammatory diseases, such as rheumatoid arthritis, glomerulonephritis, atherosclerosis, and allograft rejection.[7] [8] [9] [10] [11] [12] Defects in CSF1R are the cause of leukoencephalopathy, diffuse hereditary, with spheroids (HDLS) [MIM:221820]. An autosomal dominant adult-onset rapidly progressive neurodegenerative disorder characterized by variable behavioral, cognitive, and motor changes. Patients often die of dementia within 6 years of onset. Brain imaging shows patchy abnormalities in the cerebral white matter, predominantly affecting the frontal and parietal lobes.[13] [14] [15] [16] [17] [18] [19] Function[CSF1R_HUMAN] Tyrosine-protein kinase that acts as cell-surface receptor for CSF1 and IL34 and plays an essential role in the regulation of survival, proliferation and differentiation of hematopoietic precursor cells, especially mononuclear phagocytes, such as macrophages and monocytes. Promotes the release of proinflammatory chemokines in response to IL34 and CSF1, and thereby plays an important role in innate immunity and in inflammatory processes. Plays an important role in the regulation of osteoclast proliferation and differentiation, the regulation of bone resorption, and is required for normal bone and tooth development. Required for normal male and female fertility, and for normal development of milk ducts and acinar structures in the mammary gland during pregnancy. Promotes reorganization of the actin cytoskeleton, regulates formation of membrane ruffles, cell adhesion and cell migration, and promotes cancer cell invasion. Activates several signaling pathways in response to ligand binding. Phosphorylates PIK3R1, PLCG2, GRB2, SLA2 and CBL. Activation of PLCG2 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate, that then lead to the activation of protein kinase C family members, especially PRKCD. Phosphorylation of PIK3R1, the regulatory subunit of phosphatidylinositol 3-kinase, leads to activation of the AKT1 signaling pathway. Activated CSF1R also mediates activation of the MAP kinases MAPK1/ERK2 and/or MAPK3/ERK1, and of the SRC family kinases SRC, FYN and YES1. Activated CSF1R transmits signals both via proteins that directly interact with phosphorylated tyrosine residues in its intracellular domain, or via adapter proteins, such as GRB2. Promotes activation of STAT family members STAT3, STAT5A and/or STAT5B. Promotes tyrosine phosphorylation of SHC1 and INPP5D/SHIP-1. Receptor signaling is down-regulated by protein phosphatases, such as INPP5D/SHIP-1, that dephosphorylate the receptor and its downstream effectors, and by rapid internalization of the activated receptor.[20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedA series of pyrimidinopyridones has been designed, synthesized and shown to be potent and selective inhibitors of the FMS tyrosine kinase. Introduction of an amide substituent at the 6-position of the pyridone core resulted in a significant potency increase. Compound 24 effectively inhibited in vivo LPS-induced TNF in mice greater than 80%. Design and synthesis of a pyrido[2,3-d]pyrimidin-5-one class of anti-inflammatory FMS inhibitors.,Huang H, Hutta DA, Hu H, DesJarlais RL, Schubert C, Petrounia IP, Chaikin MA, Manthey CL, Player MR Bioorg Med Chem Lett. 2008 Apr 1;18(7):2355-61. Epub 2008 Mar 4. PMID:18342505[34] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|