1bxh: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
<StructureSection load='1bxh' size='340' side='right'caption='[[1bxh]], [[Resolution|resolution]] 2.75Å' scene=''> | <StructureSection load='1bxh' size='340' side='right'caption='[[1bxh]], [[Resolution|resolution]] 2.75Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[1bxh]] is a 4 chain structure with sequence from [ | <table><tr><td colspan='2'>[[1bxh]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Canavalia_ensiformis Canavalia ensiformis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1BXH OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1BXH FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=MMA:O1-METHYL-MANNOSE'>MMA</scene>, <scene name='pdbligand=MN:MANGANESE+(II)+ION'>MN</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=AMG:ALPHA-METHYL-D-GALACTOSIDE'>AMG</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1bxh FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1bxh OCA], [https://pdbe.org/1bxh PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1bxh RCSB], [https://www.ebi.ac.uk/pdbsum/1bxh PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1bxh ProSAT]</span></td></tr> | |||
</table> | </table> | ||
== Function == | == Function == | ||
[[ | [[https://www.uniprot.org/uniprot/CONA_CANEN CONA_CANEN]] D-mannose specific lectin. | ||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] |
Revision as of 16:10, 13 October 2021
CONCANAVALIN A COMPLEXED TO METHYL ALPHA1-2 MANNOBIOSIDECONCANAVALIN A COMPLEXED TO METHYL ALPHA1-2 MANNOBIOSIDE
Structural highlights
Function[CONA_CANEN] D-mannose specific lectin. Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedWe have determined the crystal structure of the methyl glycoside of Man alpha1-2 Man in complex with the carbohydrate binding legume lectin concanavalin A (Con A). Man alpha1-2 Man alpha-OMe binds more tightly to concanavalin A than do its alpha1-3 and alpha1-6 linked counterparts. There has been much speculation as to why this is so, including a suggestion of the presence of multiple binding sites for the alpha1-2 linked disaccharide. Crystals of the Man alpha1-2 Man alpha-OMe-Con A complex form in the space group P2(1)2(1)2(1) with cell dimensions a = 119.7 A, b = 119.7 A, c = 68.9 A and diffract to 2. 75A. The final model has good geometry and an R factor of 19.6% (Rfree= 22.8%). One tetramer is present in the asymmetric unit. In three of the four subunits, electron density for the disaccharide is visible. In the fourth only a monosaccharide is seen. In one subunit the reducing terminal sugar is recognized by the monosaccharide site; the nonreducing terminal sugar occupies a new site and the major solution conformation of the inter-sugar glycosidic linkage conformation is adopted. In contrast, in another subunit the non reducing terminal sugar sits in the so called monosaccharide binding site; the reducing terminal sugar adopts a different conformation about its inter-sugar glycosidic linkage in order for the methyl group to access a hydrophobic pocket. In the third subunit, electron density for both binding modes is observed. We demonstrate that an extended carbohydrate binding site is capable of binding the disaccharide in two distinct ways. These results provide an insight in to the balance of forces controlling protein carbohydrate interactions. Man alpha1-2 Man alpha-OMe-concanavalin A complex reveals a balance of forces involved in carbohydrate recognition.,Moothoo DN, Canan B, Field RA, Naismith JH Glycobiology. 1999 Jun;9(6):539-45. PMID:10336986[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences |
|