221l: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
<StructureSection load='221l' size='340' side='right'caption='[[221l]], [[Resolution|resolution]] 1.70Å' scene=''> | <StructureSection load='221l' size='340' side='right'caption='[[221l]], [[Resolution|resolution]] 1.70Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[221l]] is a 1 chain structure with sequence from [ | <table><tr><td colspan='2'>[[221l]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Bpt4 Bpt4]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=221L OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=221L FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=BME:BETA-MERCAPTOETHANOL'>BME</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene></td></tr> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BME:BETA-MERCAPTOETHANOL'>BME</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene></td></tr> | ||
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[ | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Lysozyme Lysozyme], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.2.1.17 3.2.1.17] </span></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=221l FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=221l OCA], [https://pdbe.org/221l PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=221l RCSB], [https://www.ebi.ac.uk/pdbsum/221l PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=221l ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
[[ | [[https://www.uniprot.org/uniprot/LYS_BPT4 LYS_BPT4]] Helps to release the mature phage particles from the cell wall by breaking down the peptidoglycan. | ||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] |
Revision as of 09:35, 6 October 2021
THE ENERGETIC COST AND THE STRUCTURAL CONSEQUENCES OF BURYING A HYDROXYL GROUP WITHIN THE CORE OF A PROTEIN DETERMINED FROM ALA TO SER AND VAL TO THR SUBSTITUTIONS IN T4 LYSOZYMETHE ENERGETIC COST AND THE STRUCTURAL CONSEQUENCES OF BURYING A HYDROXYL GROUP WITHIN THE CORE OF A PROTEIN DETERMINED FROM ALA TO SER AND VAL TO THR SUBSTITUTIONS IN T4 LYSOZYME
Structural highlights
Function[LYS_BPT4] Helps to release the mature phage particles from the cell wall by breaking down the peptidoglycan. Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedIn order to determine the thermodynamic cost of introducing a polar group within the core of a protein, a series of nine Ala-->Ser and 3 Val-->Thr substitutions was constructed in T4 lysozyme. The sites were all within alpha-helices but ranged from fully solvent-exposed to totally buried. The range of destabilization incurred by the Ala-->Ser substitutions was found to be very similar to that for the Val-->Thr replacements. For the solvent-exposed and partly exposed sites the destabilization was modest (approximately less than 0.5 kcal/mol). For the completely buried sites the destabilization was larger, but variable (approximately 1-3 kcal/mol). Crystal structure determinations showed that the Ala-->Ser mutant structures were, in general, very similar to their wild-type counterparts, even though the replacements introduce a hydroxyl group. This is in part because the introduced serines are all within alpha-helices and at congested sites can avoid steric clashes with surrounding atoms by making a hydrogen bond to a backbone carbonyl oxygen in the preceding turn of the helix. The three substituted threonine side chains essentially superimpose on their valine counterparts but display somewhat larger conformational adjustments. The results illustrate how a protein structure will adapt in different ways to avoid the presence of an unsatisfied hydrogen bond donor or acceptor. In the most extreme case, Val 149-->Thr, which is also the most destabilizing variant (delta delta G = 2.8 kcal/mol), a water molecule is incorporated in the mutant structure in order to provide a hydrogen-bonding partner. The results are consistent with the view that many hydrogen bonds within proteins contribute only marginally to stability but that noncharged polar groups that lack a hydrogen-bonding partner are very destabilizing (delta delta G approximately greater than 3 kcal/mol). Supportive of other studies, the alpha-helix propensity of alanine is seen to be higher than that of serine (delta delta G = 0.46 +/- 0.04 kcal/mol), while threonine and valine are similar in alpha-helix propensity. Energetic cost and structural consequences of burying a hydroxyl group within the core of a protein determined from Ala-->Ser and Val-->Thr substitutions in T4 lysozyme.,Blaber M, Lindstrom JD, Gassner N, Xu J, Heinz DW, Matthews BW Biochemistry. 1993 Oct 26;32(42):11363-73. PMID:8218201[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences |
|