1j70: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
<StructureSection load='1j70' size='340' side='right'caption='[[1j70]], [[Resolution|resolution]] 2.30Å' scene=''> | <StructureSection load='1j70' size='340' side='right'caption='[[1j70]], [[Resolution|resolution]] 2.30Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[1j70]] is a 3 chain structure with sequence from [ | <table><tr><td colspan='2'>[[1j70]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Atcc_18824 Atcc 18824]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1J70 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1J70 FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=NA:SODIUM+ION'>NA</scene>, <scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene></td></tr> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=NA:SODIUM+ION'>NA</scene>, <scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene></td></tr> | ||
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[ | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Sulfate_adenylyltransferase Sulfate adenylyltransferase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.7.4 2.7.7.4] </span></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1j70 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1j70 OCA], [https://pdbe.org/1j70 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1j70 RCSB], [https://www.ebi.ac.uk/pdbsum/1j70 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1j70 ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
[[ | [[https://www.uniprot.org/uniprot/MET3_YEAST MET3_YEAST]] Catalyzes the first intracellular reaction of sulfate assimilation, forming adenosine-5'-phosphosulfate (APS) from inorganic sulfate and ATP. Plays an important role in sulfate activation as a component of the biosynthesis pathway of sulfur-containing amino acids.[HAMAP-Rule:MF_03106] | ||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] |
Revision as of 09:36, 11 August 2021
CRYSTAL STRUCTURE OF YEAST ATP SULFURYLASECRYSTAL STRUCTURE OF YEAST ATP SULFURYLASE
Structural highlights
Function[MET3_YEAST] Catalyzes the first intracellular reaction of sulfate assimilation, forming adenosine-5'-phosphosulfate (APS) from inorganic sulfate and ATP. Plays an important role in sulfate activation as a component of the biosynthesis pathway of sulfur-containing amino acids.[HAMAP-Rule:MF_03106] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedATP sulfurylase catalyzes the first step in the activation of sulfate by transferring the adenylyl-moiety (AMP approximately ) of ATP to sulfate to form adenosine 5'-phosphosulfate (APS) and pyrophosphate (PP(i)). Subsequently, APS kinase mediates transfer of the gamma-phosphoryl group of ATP to APS to form 3'-phosphoadenosine 5'-phosphosulfate (PAPS) and ADP. The recently determined crystal structure of yeast ATP sulfurylase suggests that its C-terminal domain is structurally quite independent from the other domains, and not essential for catalytic activity. It seems, however, to dictate the oligomerization state of the protein. Here we show that truncation of this domain results in a monomeric enzyme with slightly enhanced catalytic efficiency. Structural alignment of the C-terminal domain indicated that it is extremely similar in its fold to APS kinase although not catalytically competent. While carrying out these structural and functional studies a surface groove was noted. Careful inspection and modeling revealed that the groove is sufficiently deep and wide, as well as properly positioned, to act as a substrate channel between the ATP sulfurylase and APS kinase-like domains of the enzyme. Structural and functional analysis of a truncated form of Saccharomyces cerevisiae ATP sulfurylase: C-terminal domain essential for oligomer formation but not for activity.,Lalor DJ, Schnyder T, Saridakis V, Pilloff DE, Dong A, Tang H, Leyh TS, Pai EF Protein Eng. 2003 Dec;16(12):1071-9. PMID:14983089[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|