1i4l: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
<StructureSection load='1i4l' size='340' side='right'caption='[[1i4l]], [[Resolution|resolution]] 2.70Å' scene=''> | <StructureSection load='1i4l' size='340' side='right'caption='[[1i4l]], [[Resolution|resolution]] 2.70Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[1i4l]] is a 3 chain structure with sequence from [ | <table><tr><td colspan='2'>[[1i4l]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1I4L OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1I4L FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=GDP:GUANOSINE-5-DIPHOSPHATE'>GDP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GDP:GUANOSINE-5-DIPHOSPHATE'>GDP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> | ||
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1i49|1i49]], [[1i4d|1i4d]], [[1i4t|1i4t]]</td></tr> | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[1i49|1i49]], [[1i4d|1i4d]], [[1i4t|1i4t]]</div></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1i4l FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1i4l OCA], [https://pdbe.org/1i4l PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1i4l RCSB], [https://www.ebi.ac.uk/pdbsum/1i4l PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1i4l ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
[[ | [[https://www.uniprot.org/uniprot/ARFP2_HUMAN ARFP2_HUMAN]] Putative target protein of ADP-ribosylation factor. Involved in membrane ruffling. [[https://www.uniprot.org/uniprot/RAC1_HUMAN RAC1_HUMAN]] Plasma membrane-associated small GTPase which cycles between active GTP-bound and inactive GDP-bound states. In its active state, binds to a variety of effector proteins to regulate cellular responses such as secretory processes, phagocytosis of apoptotic cells, epithelial cell polarization and growth-factor induced formation of membrane ruffles. Rac1 p21/rho GDI heterodimer is the active component of the cytosolic factor sigma 1, which is involved in stimulation of the NADPH oxidase activity in macrophages (By similarity). Essential for the SPATA13-mediated regulation of cell migration and adhesion assembly and disassembly. Stimulates PKN2 kinase activity. In concert with RAB7A, plays a role in regulating the formation of RBs (ruffled borders) in osteoclasts. In glioma cells, promotes cell migration and invasion.<ref>PMID:1643658</ref> <ref>PMID:9121475</ref> <ref>PMID:19934221</ref> <ref>PMID:19403692</ref> <ref>PMID:20696765</ref> Isoform B has an accelerated GEF-independent GDP/GTP exchange and an impaired GTP hydrolysis, which is restored partially by GTPase-activating proteins. It is able to bind to the GTPase-binding domain of PAK but not full-length PAK in a GTP-dependent manner, suggesting that the insertion does not completely abolish effector interaction.<ref>PMID:1643658</ref> <ref>PMID:9121475</ref> <ref>PMID:19934221</ref> <ref>PMID:19403692</ref> <ref>PMID:20696765</ref> | ||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Line 31: | Line 31: | ||
==See Also== | ==See Also== | ||
*[[Rac|Rac]] | *[[Rac 3D structures|Rac 3D structures]] | ||
== References == | == References == | ||
<references/> | <references/> |
Revision as of 13:56, 4 August 2021
CRYSTAL STRUCTURE ANALYSIS OF RAC1-GDP IN COMPLEX WITH ARFAPTIN (P41)CRYSTAL STRUCTURE ANALYSIS OF RAC1-GDP IN COMPLEX WITH ARFAPTIN (P41)
Structural highlights
Function[ARFP2_HUMAN] Putative target protein of ADP-ribosylation factor. Involved in membrane ruffling. [RAC1_HUMAN] Plasma membrane-associated small GTPase which cycles between active GTP-bound and inactive GDP-bound states. In its active state, binds to a variety of effector proteins to regulate cellular responses such as secretory processes, phagocytosis of apoptotic cells, epithelial cell polarization and growth-factor induced formation of membrane ruffles. Rac1 p21/rho GDI heterodimer is the active component of the cytosolic factor sigma 1, which is involved in stimulation of the NADPH oxidase activity in macrophages (By similarity). Essential for the SPATA13-mediated regulation of cell migration and adhesion assembly and disassembly. Stimulates PKN2 kinase activity. In concert with RAB7A, plays a role in regulating the formation of RBs (ruffled borders) in osteoclasts. In glioma cells, promotes cell migration and invasion.[1] [2] [3] [4] [5] Isoform B has an accelerated GEF-independent GDP/GTP exchange and an impaired GTP hydrolysis, which is restored partially by GTPase-activating proteins. It is able to bind to the GTPase-binding domain of PAK but not full-length PAK in a GTP-dependent manner, suggesting that the insertion does not completely abolish effector interaction.[6] [7] [8] [9] [10] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedSmall G proteins are GTP-dependent molecular switches that regulate numerous cellular functions. They can be classified into homologous subfamilies that are broadly associated with specific biological processes. Cross-talk between small G-protein families has an important role in signalling, but the mechanism by which it occurs is poorly understood. The coordinated action of Arf and Rho family GTPases is required to regulate many cellular processes including lipid signalling, cell motility and Golgi function. Arfaptin is a ubiquitously expressed protein implicated in mediating cross-talk between Rac (a member of the Rho family) and Arf small GTPases. Here we show that Arfaptin binds specifically to GTP-bound Arf1 and Arf6, but binds to Rac.GTP and Rac.GDP with similar affinities. The X-ray structure of Arfaptin reveals an elongated, crescent-shaped dimer of three-helix coiled-coils. Structures of Arfaptin with Rac bound to either GDP or the slowly hydrolysable analogue GMPPNP show that the switch regions adopt similar conformations in both complexes. Our data highlight fundamental differences between the molecular mechanisms of Rho and Ras family signalling, and suggest a model of Arfaptin-mediated synergy between the Arf and Rho family signalling pathways. The structural basis of Arfaptin-mediated cross-talk between Rac and Arf signalling pathways.,Tarricone C, Xiao B, Justin N, Walker PA, Rittinger K, Gamblin SJ, Smerdon SJ Nature. 2001 May 10;411(6834):215-9. PMID:11346801[11] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|