Growth factors: Difference between revisions
No edit summary |
No edit summary |
||
Line 10: | Line 10: | ||
The <scene name='80/801744/Cv/4'>kinase domain of M-CSF receptor interacts with a drug-designed inhibitor</scene> via the conserved kinase DFG motif (colored in salmon) and its gatekeeper threonine residue (colored in magenta)<ref>PMID:23493555</ref>. | The <scene name='80/801744/Cv/4'>kinase domain of M-CSF receptor interacts with a drug-designed inhibitor</scene> via the conserved kinase DFG motif (colored in salmon) and its gatekeeper threonine residue (colored in magenta)<ref>PMID:23493555</ref>. | ||
*[[Epidermal growth factor]] and [[Epidermal Growth Factor Receptor]] | *[[Epidermal growth factor]] and [[Epidermal Growth Factor Receptor]] (EGFR). EGFR belongs to [[Receptor tyrosine kinases]], class I. | ||
[[Lapatinib]] is a EGFR inhibitor used in breast cancer treatment. EGFRs are overexpressed in many types of human carcinomas including lung, pancreatic, and breast cancer, and are often mutated. This overexpression leads to excessive activation of the anti-apoptotic [[Ras]] signaling cascade, resulting in uncontrolled [[DNA_Replication|DNA synthesis]] and cell proliferation. The <scene name='Lapatinib/Egfr/1'>EGFR tyrosine kinase domain</scene> is responsible for activating this Ras signaling cascade. Upon binding ligands like Epidermal Growth Factor, EGFR dimerizes and autophosphorylates several tyrosine residues at its C-terminal domain. Upon phosphorylation, EGFR undergoes a significant conformational shift, revealing an additional binding site capable of binding and activating downstream signaling proteins. | [[Lapatinib]] is a EGFR inhibitor used in breast cancer treatment. EGFRs are overexpressed in many types of human carcinomas including lung, pancreatic, and breast cancer, and are often mutated. This overexpression leads to excessive activation of the anti-apoptotic [[Ras]] signaling cascade, resulting in uncontrolled [[DNA_Replication|DNA synthesis]] and cell proliferation. The <scene name='Lapatinib/Egfr/1'>EGFR tyrosine kinase domain</scene> is responsible for activating this Ras signaling cascade. Upon binding ligands like Epidermal Growth Factor, EGFR dimerizes and autophosphorylates several tyrosine residues at its C-terminal domain. Upon phosphorylation, EGFR undergoes a significant conformational shift, revealing an additional binding site capable of binding and activating downstream signaling proteins. | ||