Ester protein crosslinks: Difference between revisions
Eric Martz (talk | contribs) No edit summary |
Eric Martz (talk | contribs) No edit summary |
||
Line 1: | Line 1: | ||
[https://en.wikipedia.org/wiki/Ester Ester bonds] between threonine and glutamine sidechains can form covalent cross-links between polypeptide chains<ref name="kwon2014">PMID: 24344302</ref>. First observed in repetitive domains of a putative surface-anchored adhesin of ''Clostridium perfringens'' (Gram positive)<ref name="kwon2014" />, analysis of sequences suggested "that these intramolecular ester bonds are a widespread and common feature of cell surface adhesion proteins in Gram-positive bacteria"<ref name="kwon2014" />. In the examples studied, the Thr-Gln ester bonds occur between the first and last beta strands, increasing thermal stability and resisance to proteases<ref name="kwon2014" />. The structures containing such ester crosslinks "have in common is that they are very long and thin but also subject to large mechanical shear stresses and protease-rich environments"<ref name="kwon2014" />. | [https://en.wikipedia.org/wiki/Ester Ester bonds] between threonine and glutamine sidechains can form covalent cross-links between polypeptide chains<ref name="kwon2014">PMID: 24344302</ref>. First observed in repetitive domains of a putative surface-anchored adhesin of ''Clostridium perfringens'' (Gram positive)<ref name="kwon2014" />, analysis of sequences suggested "that these intramolecular ester bonds are a widespread and common feature of cell surface adhesion proteins in Gram-positive bacteria"<ref name="kwon2014" />. In the examples studied, the Thr-Gln ester bonds occur between the first and last beta strands of immunoglobulin-like domains, increasing thermal stability and resisance to proteases<ref name="kwon2014" />. The structures containing such ester crosslinks "have in common is that they are very long and thin but also subject to large mechanical shear stresses and protease-rich environments"<ref name="kwon2014" />. | ||
==Examples== | ==Examples== |
Revision as of 02:51, 1 July 2021
Ester bonds between threonine and glutamine sidechains can form covalent cross-links between polypeptide chains[1]. First observed in repetitive domains of a putative surface-anchored adhesin of Clostridium perfringens (Gram positive)[1], analysis of sequences suggested "that these intramolecular ester bonds are a widespread and common feature of cell surface adhesion proteins in Gram-positive bacteria"[1]. In the examples studied, the Thr-Gln ester bonds occur between the first and last beta strands of immunoglobulin-like domains, increasing thermal stability and resisance to proteases[1]. The structures containing such ester crosslinks "have in common is that they are very long and thin but also subject to large mechanical shear stresses and protease-rich environments"[1].
ExamplesExamples
- 4ni6 REPEAT DOMAIN 1 OF CLOSTRIDIUM PERFRINGENS CPE0147
- 4mkm REPEAT DOMAINS 1 & 2 OF CLOSTRIDIUM PERFRINGENS CPE0147
Other Protein CrosslinksOther Protein Crosslinks
In addition to the Ester crosslinks discussed above, other covalent cross-links between polypeptide chains include: