2pmw: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==The Crystal Structure of Proprotein convertase subtilisin kexin type 9 (PCSK9)== | ==The Crystal Structure of Proprotein convertase subtilisin kexin type 9 (PCSK9)== | ||
<StructureSection load='2pmw' size='340' side='right' caption='[[2pmw]], [[Resolution|resolution]] 2.30Å' scene=''> | <StructureSection load='2pmw' size='340' side='right'caption='[[2pmw]], [[Resolution|resolution]] 2.30Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[2pmw]] is a 2 chain structure with sequence from [ | <table><tr><td colspan='2'>[[2pmw]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2PMW OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2PMW FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | ||
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">PCSK9, NARC1 ([ | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">PCSK9, NARC1 ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2pmw FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2pmw OCA], [https://pdbe.org/2pmw PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2pmw RCSB], [https://www.ebi.ac.uk/pdbsum/2pmw PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2pmw ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Disease == | == Disease == | ||
[[ | [[https://www.uniprot.org/uniprot/PCSK9_HUMAN PCSK9_HUMAN]] Defects in PCSK9 are the cause of hypercholesterolemia autosomal dominant type 3 (HCHOLA3) [MIM:[https://omim.org/entry/603776 603776]]. A familial condition characterized by elevated circulating cholesterol contained in either low-density lipoproteins alone or also in very-low-density lipoproteins.<ref>PMID:12730697</ref> | ||
== Function == | == Function == | ||
[[ | [[https://www.uniprot.org/uniprot/PCSK9_HUMAN PCSK9_HUMAN]] Crucial player in the regulation of plasma cholesterol homeostasis. Binds to low-density lipid receptor family members: low density lipoprotein receptor (LDLR), very low density lipoprotein receptor (VLDLR), apolipoprotein E receptor (LRP1/APOER) and apolipoprotein receptor 2 (LRP8/APOER2), and promotes their degradation in intracellular acidic compartments. Acts via a non-proteolytic mechanism to enhance the degradation of the hepatic LDLR through a clathrin LDLRAP1/ARH-mediated pathway. May prevent the recycling of LDLR from endosomes to the cell surface or direct it to lysosomes for degradation. Can induce ubiquitination of LDLR leading to its subsequent degradation. Inhibits intracellular degradation of APOB via the autophagosome/lysosome pathway in a LDLR-independent manner. Involved in the disposal of non-acetylated intermediates of BACE1 in the early secretory pathway. Inhibits epithelial Na(+) channel (ENaC)-mediated Na(+) absorption by reducing ENaC surface expression primarily by increasing its proteasomal degradation. Regulates neuronal apoptosis via modulation of LRP8/APOER2 levels and related anti-apoptotic signaling pathways.<ref>PMID:17461796</ref> <ref>PMID:18197702</ref> <ref>PMID:18660751</ref> <ref>PMID:18039658</ref> <ref>PMID:22074827</ref> <ref>PMID:22580899</ref> <ref>PMID:22493497</ref> | ||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Line 39: | Line 39: | ||
</StructureSection> | </StructureSection> | ||
[[Category: Human]] | [[Category: Human]] | ||
[[Category: Large Structures]] | |||
[[Category: Piper, D E]] | [[Category: Piper, D E]] | ||
[[Category: Romanow, W G]] | [[Category: Romanow, W G]] |
Revision as of 18:27, 17 June 2021
The Crystal Structure of Proprotein convertase subtilisin kexin type 9 (PCSK9)The Crystal Structure of Proprotein convertase subtilisin kexin type 9 (PCSK9)
Structural highlights
Disease[PCSK9_HUMAN] Defects in PCSK9 are the cause of hypercholesterolemia autosomal dominant type 3 (HCHOLA3) [MIM:603776]. A familial condition characterized by elevated circulating cholesterol contained in either low-density lipoproteins alone or also in very-low-density lipoproteins.[1] Function[PCSK9_HUMAN] Crucial player in the regulation of plasma cholesterol homeostasis. Binds to low-density lipid receptor family members: low density lipoprotein receptor (LDLR), very low density lipoprotein receptor (VLDLR), apolipoprotein E receptor (LRP1/APOER) and apolipoprotein receptor 2 (LRP8/APOER2), and promotes their degradation in intracellular acidic compartments. Acts via a non-proteolytic mechanism to enhance the degradation of the hepatic LDLR through a clathrin LDLRAP1/ARH-mediated pathway. May prevent the recycling of LDLR from endosomes to the cell surface or direct it to lysosomes for degradation. Can induce ubiquitination of LDLR leading to its subsequent degradation. Inhibits intracellular degradation of APOB via the autophagosome/lysosome pathway in a LDLR-independent manner. Involved in the disposal of non-acetylated intermediates of BACE1 in the early secretory pathway. Inhibits epithelial Na(+) channel (ENaC)-mediated Na(+) absorption by reducing ENaC surface expression primarily by increasing its proteasomal degradation. Regulates neuronal apoptosis via modulation of LRP8/APOER2 levels and related anti-apoptotic signaling pathways.[2] [3] [4] [5] [6] [7] [8] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedProprotein convertase subtilisin kexin type 9 (PCSK9) has been shown to be involved in the regulation of extracellular levels of the low-density lipoprotien receptor (LDLR). Although PCSK9 is a subtilase, it has not been shown to degrade the LDLR, and its LDLR-lowering mechanism remains uncertain. Here we report the crystal structure of human PCSK9 at 2.3 A resolution. PCSK9 has subtilisin-like pro- and catalytic domains, and the stable interaction between these domains prevents access to PCSK9's catalytic site. The C-terminal domain of PCSK9 has a novel protein fold and may mediate protein-protein interactions. The structure of PCSK9 provides insight into its biochemical characteristics and biological function. The crystal structure of PCSK9: a regulator of plasma LDL-cholesterol.,Piper DE, Jackson S, Liu Q, Romanow WG, Shetterly S, Thibault ST, Shan B, Walker NP Structure. 2007 May;15(5):545-52. PMID:17502100[9] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|