2p3a: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Crystal Structure of the multi-drug resistant mutant subtype B HIV protease complexed with TL-3 inhibitor== | ==Crystal Structure of the multi-drug resistant mutant subtype B HIV protease complexed with TL-3 inhibitor== | ||
<StructureSection load='2p3a' size='340' side='right' caption='[[2p3a]], [[Resolution|resolution]] 1.75Å' scene=''> | <StructureSection load='2p3a' size='340' side='right'caption='[[2p3a]], [[Resolution|resolution]] 1.75Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[2p3a]] is a 2 chain structure with sequence from [ | <table><tr><td colspan='2'>[[2p3a]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/9hiv1 9hiv1]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2P3A OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2P3A FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=3TL:BENZYL+[(1S,4S,7S,8R,9R,10S,13S,16S)-7,10-DIBENZYL-8,9-DIHYDROXY-1,16-DIMETHYL-4,13-BIS(1-METHYLETHYL)-2,5,12,15,18-PENTAOXO-20-PHENYL-19-OXA-3,6,11,14,17-PENTAAZAICOS-1-YL]CARBAMATE'>3TL</scene></td></tr> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=3TL:BENZYL+[(1S,4S,7S,8R,9R,10S,13S,16S)-7,10-DIBENZYL-8,9-DIHYDROXY-1,16-DIMETHYL-4,13-BIS(1-METHYLETHYL)-2,5,12,15,18-PENTAOXO-20-PHENYL-19-OXA-3,6,11,14,17-PENTAAZAICOS-1-YL]CARBAMATE'>3TL</scene></td></tr> | ||
<tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=CME:S,S-(2-HYDROXYETHYL)THIOCYSTEINE'>CME</scene></td></tr> | <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=CME:S,S-(2-HYDROXYETHYL)THIOCYSTEINE'>CME</scene></td></tr> | ||
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">pol ([ | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">pol ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=11676 9HIV1])</td></tr> | ||
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[ | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/HIV-1_retropepsin HIV-1 retropepsin], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.4.23.16 3.4.23.16] </span></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2p3a FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2p3a OCA], [https://pdbe.org/2p3a PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2p3a RCSB], [https://www.ebi.ac.uk/pdbsum/2p3a PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2p3a ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
Line 14: | Line 14: | ||
Check<jmol> | Check<jmol> | ||
<jmolCheckbox> | <jmolCheckbox> | ||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/p3/2p3a_consurf.spt"</scriptWhenChecked> | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/p3/2p3a_consurf.spt"</scriptWhenChecked> | ||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
Line 31: | Line 31: | ||
==See Also== | ==See Also== | ||
*[[Immunodeficiency virus protease|Immunodeficiency virus protease]] | *[[Immunodeficiency virus protease 3D structures|Immunodeficiency virus protease 3D structures]] | ||
== References == | == References == | ||
<references/> | <references/> | ||
Line 37: | Line 37: | ||
</StructureSection> | </StructureSection> | ||
[[Category: HIV-1 retropepsin]] | [[Category: HIV-1 retropepsin]] | ||
[[Category: Large Structures]] | |||
[[Category: Gustchina, A]] | [[Category: Gustchina, A]] | ||
[[Category: Krauchenco, S]] | [[Category: Krauchenco, S]] |
Revision as of 18:15, 17 June 2021
Crystal Structure of the multi-drug resistant mutant subtype B HIV protease complexed with TL-3 inhibitorCrystal Structure of the multi-drug resistant mutant subtype B HIV protease complexed with TL-3 inhibitor
Structural highlights
Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedAlthough a majority of HIV-1 infections in Brazil are caused by the subtype B virus (also prevalent in the United States and Western Europe), viral subtypes F and C are also found very frequently. Genomic differences between the subtypes give rise to sequence variations in the encoded proteins, including the HIV-1 protease. The current anti-HIV drugs have been developed primarily against subtype B and the effects arising from the combination of drug-resistance mutations with the naturally existing polymorphisms in non-B HIV-1 subtypes are only beginning to be elucidated. To gain more insights into the structure and function of different variants of HIV proteases, we have determined a 2.1 A structure of the native subtype F HIV-1 protease (PR) in complex with the protease inhibitor TL-3. We have also solved crystal structures of two multi-drug resistant mutant HIV PRs in complex with TL-3, from subtype B (Bmut) carrying the primary mutations V82A and L90M, and from subtype F (Fmut) carrying the primary mutation V82A plus the secondary mutation M36I, at 1.75 A and 2.8 A resolution, respectively. The proteases Bmut, Fwt and Fmut exhibit sevenfold, threefold, and 54-fold resistance to TL-3, respectively. In addition, the structure of subtype B wild type HIV-PR in complex with TL-3 has been redetermined in space group P6(1), consistent with the other three structures. Our results show that the primary mutation V82A causes the known effect of collapsing the S1/S1' pockets that ultimately lead to the reduced inhibitory effect of TL-3. Our results further indicate that two naturally occurring polymorphic substitutions in subtype F and other non-B HIV proteases, M36I and L89M, may lead to early development of drug resistance in patients infected with non-B HIV subtypes. Structural characterization of B and non-B subtypes of HIV-protease: insights into the natural susceptibility to drug resistance development.,Sanches M, Krauchenco S, Martins NH, Gustchina A, Wlodawer A, Polikarpov I J Mol Biol. 2007 Jun 15;369(4):1029-40. Epub 2007 Mar 24. PMID:17467738[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|