2owb: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Structure of the Catalytic Domain of Human Polo-like Kinase 1== | ==Structure of the Catalytic Domain of Human Polo-like Kinase 1== | ||
<StructureSection load='2owb' size='340' side='right' caption='[[2owb]], [[Resolution|resolution]] 2.10Å' scene=''> | <StructureSection load='2owb' size='340' side='right'caption='[[2owb]], [[Resolution|resolution]] 2.10Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[2owb]] is a 1 chain structure with sequence from [ | <table><tr><td colspan='2'>[[2owb]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2OWB OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2OWB FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=626:4-(4-METHYLPIPERAZIN-1-YL)-N-[5-(2-THIENYLACETYL)-1,5-DIHYDROPYRROLO[3,4-C]PYRAZOL-3-YL]BENZAMIDE'>626</scene>, <scene name='pdbligand=ACT:ACETATE+ION'>ACT</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=626:4-(4-METHYLPIPERAZIN-1-YL)-N-[5-(2-THIENYLACETYL)-1,5-DIHYDROPYRROLO[3,4-C]PYRAZOL-3-YL]BENZAMIDE'>626</scene>, <scene name='pdbligand=ACT:ACETATE+ION'>ACT</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | ||
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">PLK1, PLK ([ | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">PLK1, PLK ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr> | ||
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[ | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Polo_kinase Polo kinase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.11.21 2.7.11.21] </span></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2owb FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2owb OCA], [https://pdbe.org/2owb PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2owb RCSB], [https://www.ebi.ac.uk/pdbsum/2owb PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2owb ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Disease == | == Disease == | ||
[[ | [[https://www.uniprot.org/uniprot/PLK1_HUMAN PLK1_HUMAN]] Note=Defects in PLK1 are associated with some cancers, such as gastric, thyroid or B-cell lymphomas. Expression is cancer increased in tumor tissues with a poor prognosis, suggesting a role in malignant transformations and carcinogenesis. | ||
== Function == | == Function == | ||
[[ | [[https://www.uniprot.org/uniprot/PLK1_HUMAN PLK1_HUMAN]] Serine/threonine-protein kinase that performs several important functions throughout M phase of the cell cycle, including the regulation of centrosome maturation and spindle assembly, the removal of cohesins from chromosome arms, the inactivation of anaphase-promoting complex/cyclosome (APC/C) inhibitors, and the regulation of mitotic exit and cytokinesis. Polo-like kinase proteins acts by binding and phosphorylating proteins are that already phosphorylated on a specific motif recognized by the POLO box domains. Phosphorylates BORA, BUB1B/BUBR1, CCNB1, CDC25C, CEP55, ECT2, ERCC6L, FBXO5/EMI1, FOXM1, KIF20A/MKLP2, MLF1IP, NEDD1, NINL, NPM1, NUDC, PKMYT1/MYT1, PLK1S1/KIZ, PPP1R12A/MYPT1, PRC1, RACGAP1/CYK4, SGOL1, STAG2/SA2, TEX14, TOPORS, p73/TP73, TPT1 and WEE1. Plays a key role in centrosome functions and the assembly of bipolar spindles by phosphorylating PLK1S1/KIZ, NEDD1 and NINL. NEDD1 phosphorylation promotes subsequent targeting of the gamma-tubulin ring complex (gTuRC) to the centrosome, an important step for spindle formation. Phosphorylation of NINL component of the centrosome leads to NINL dissociation from other centrosomal proteins. Involved in mitosis exit and cytokinesis by phosphorylating CEP55, ECT2, KIF20A/MKLP2, MLF1IP, PRC1 and RACGAP1. Recruited at the central spindle by phosphorylating and docking PRC1 and KIF20A/MKLP2; creates its own docking sites on PRC1 and KIF20A/MKLP2 by mediating phosphorylation of sites subsequently recognized by the POLO box domains. Phosphorylates RACGAP1, thereby creating a docking site for the Rho GTP exchange factor ECT2 that is essential for the cleavage furrow formation. Promotes the central spindle recruitment of ECT2. Plays a central role in G2/M transition of mitotic cell cycle by phosphorylating CCNB1, CDC25C, FOXM1, MLF1IP, PKMYT1/MYT1, PPP1R12A/MYPT1 and WEE1. Part of a regulatory circuit that promotes the activation of CDK1 by phosphorylating the positive regulator CDC25C and inhibiting the negative regulators WEE1 and PKMYT1/MYT1. Also acts by mediating phosphorylation of cyclin-B1 (CCNB1) on centrosomes in prophase. Phosphorylates FOXM1, a key mitotic transcription regulator, leading to enhance FOXM1 transcriptional activity. Involved in kinetochore functions and sister chromatid cohesion by phosphorylating BUB1B/BUBR1, FBXO5/EMI1 and STAG2/SA2. PLK1 is high on non-attached kinetochores suggesting a role of PLK1 in kinetochore attachment or in spindle assembly checkpoint (SAC) regulation. Required for kinetochore localization of BUB1B. Regulates the dissociation of cohesin from chromosomes by phosphorylating cohesin subunits such as STAG2/SA2. Phosphorylates SGOL1: required for spindle pole localization of isoform 3 of SGOL1 and plays a role in regulating its centriole cohesion function. Mediates phosphorylation of FBXO5/EMI1, a negative regulator of the APC/C complex during prophase, leading to FBXO5/EMI1 ubiquitination and degradation by the proteasome. Acts as a negative regulator of p53 family members: phosphorylates TOPORS, leading to inhibit the sumoylation of p53/TP53 and simultaneously enhance the ubiquitination and subsequent degradation of p53/TP53. Phosphorylates the transactivation domain of the transcription factor p73/TP73, leading to inhibit p73/TP73-mediated transcriptional activation and pro-apoptotic functions. Phosphorylates BORA, and thereby promotes the degradation of BORA. Contributes to the regulation of AURKA function. Also required for recovery after DNA damage checkpoint and entry into mitosis.<ref>PMID:8991084</ref> <ref>PMID:11202906</ref> <ref>PMID:12207013</ref> <ref>PMID:12447691</ref> <ref>PMID:12852856</ref> <ref>PMID:12738781</ref> <ref>PMID:12939256</ref> <ref>PMID:12524548</ref> <ref>PMID:14734534</ref> <ref>PMID:15469984</ref> <ref>PMID:15070733</ref> <ref>PMID:15148369</ref> <ref>PMID:16198290</ref> <ref>PMID:16980960</ref> <ref>PMID:16247472</ref> <ref>PMID:17081991</ref> <ref>PMID:17617734</ref> <ref>PMID:17376779</ref> <ref>PMID:17351640</ref> <ref>PMID:18418051</ref> <ref>PMID:18521620</ref> <ref>PMID:18331714</ref> <ref>PMID:18477460</ref> <ref>PMID:18174154</ref> <ref>PMID:19160488</ref> <ref>PMID:18615013</ref> <ref>PMID:19473992</ref> <ref>PMID:19509060</ref> <ref>PMID:19351716</ref> <ref>PMID:19468300</ref> <ref>PMID:19468302</ref> <ref>PMID:14532005</ref> <ref>PMID:19597481</ref> | ||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Line 34: | Line 34: | ||
==See Also== | ==See Also== | ||
*[[Serine/threonine protein kinase|Serine/threonine protein kinase]] | *[[Serine/threonine protein kinase 3D structures|Serine/threonine protein kinase 3D structures]] | ||
== References == | == References == | ||
<references/> | <references/> | ||
Line 40: | Line 40: | ||
</StructureSection> | </StructureSection> | ||
[[Category: Human]] | [[Category: Human]] | ||
[[Category: Large Structures]] | |||
[[Category: Polo kinase]] | [[Category: Polo kinase]] | ||
[[Category: Ding, Y H]] | [[Category: Ding, Y H]] |
Revision as of 16:07, 9 June 2021
Structure of the Catalytic Domain of Human Polo-like Kinase 1Structure of the Catalytic Domain of Human Polo-like Kinase 1
Structural highlights
Disease[PLK1_HUMAN] Note=Defects in PLK1 are associated with some cancers, such as gastric, thyroid or B-cell lymphomas. Expression is cancer increased in tumor tissues with a poor prognosis, suggesting a role in malignant transformations and carcinogenesis. Function[PLK1_HUMAN] Serine/threonine-protein kinase that performs several important functions throughout M phase of the cell cycle, including the regulation of centrosome maturation and spindle assembly, the removal of cohesins from chromosome arms, the inactivation of anaphase-promoting complex/cyclosome (APC/C) inhibitors, and the regulation of mitotic exit and cytokinesis. Polo-like kinase proteins acts by binding and phosphorylating proteins are that already phosphorylated on a specific motif recognized by the POLO box domains. Phosphorylates BORA, BUB1B/BUBR1, CCNB1, CDC25C, CEP55, ECT2, ERCC6L, FBXO5/EMI1, FOXM1, KIF20A/MKLP2, MLF1IP, NEDD1, NINL, NPM1, NUDC, PKMYT1/MYT1, PLK1S1/KIZ, PPP1R12A/MYPT1, PRC1, RACGAP1/CYK4, SGOL1, STAG2/SA2, TEX14, TOPORS, p73/TP73, TPT1 and WEE1. Plays a key role in centrosome functions and the assembly of bipolar spindles by phosphorylating PLK1S1/KIZ, NEDD1 and NINL. NEDD1 phosphorylation promotes subsequent targeting of the gamma-tubulin ring complex (gTuRC) to the centrosome, an important step for spindle formation. Phosphorylation of NINL component of the centrosome leads to NINL dissociation from other centrosomal proteins. Involved in mitosis exit and cytokinesis by phosphorylating CEP55, ECT2, KIF20A/MKLP2, MLF1IP, PRC1 and RACGAP1. Recruited at the central spindle by phosphorylating and docking PRC1 and KIF20A/MKLP2; creates its own docking sites on PRC1 and KIF20A/MKLP2 by mediating phosphorylation of sites subsequently recognized by the POLO box domains. Phosphorylates RACGAP1, thereby creating a docking site for the Rho GTP exchange factor ECT2 that is essential for the cleavage furrow formation. Promotes the central spindle recruitment of ECT2. Plays a central role in G2/M transition of mitotic cell cycle by phosphorylating CCNB1, CDC25C, FOXM1, MLF1IP, PKMYT1/MYT1, PPP1R12A/MYPT1 and WEE1. Part of a regulatory circuit that promotes the activation of CDK1 by phosphorylating the positive regulator CDC25C and inhibiting the negative regulators WEE1 and PKMYT1/MYT1. Also acts by mediating phosphorylation of cyclin-B1 (CCNB1) on centrosomes in prophase. Phosphorylates FOXM1, a key mitotic transcription regulator, leading to enhance FOXM1 transcriptional activity. Involved in kinetochore functions and sister chromatid cohesion by phosphorylating BUB1B/BUBR1, FBXO5/EMI1 and STAG2/SA2. PLK1 is high on non-attached kinetochores suggesting a role of PLK1 in kinetochore attachment or in spindle assembly checkpoint (SAC) regulation. Required for kinetochore localization of BUB1B. Regulates the dissociation of cohesin from chromosomes by phosphorylating cohesin subunits such as STAG2/SA2. Phosphorylates SGOL1: required for spindle pole localization of isoform 3 of SGOL1 and plays a role in regulating its centriole cohesion function. Mediates phosphorylation of FBXO5/EMI1, a negative regulator of the APC/C complex during prophase, leading to FBXO5/EMI1 ubiquitination and degradation by the proteasome. Acts as a negative regulator of p53 family members: phosphorylates TOPORS, leading to inhibit the sumoylation of p53/TP53 and simultaneously enhance the ubiquitination and subsequent degradation of p53/TP53. Phosphorylates the transactivation domain of the transcription factor p73/TP73, leading to inhibit p73/TP73-mediated transcriptional activation and pro-apoptotic functions. Phosphorylates BORA, and thereby promotes the degradation of BORA. Contributes to the regulation of AURKA function. Also required for recovery after DNA damage checkpoint and entry into mitosis.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedPolo-like kinase 1 (Plk1) is an attractive target for the development of anticancer agents due to its importance in regulating cell-cycle progression. Overexpression of Plk1 has been detected in a variety of cancers, and expression levels often correlate with poor prognosis. Despite high interest in Plk1-targeted therapeutics, there is currently no structure publicly available to guide structure-based drug design of specific inhibitors. We determined the crystal structures of the T210V mutant of the kinase domain of human Plk1 complexed with the nonhydrolyzable ATP analogue adenylylimidodiphosphate (AMPPNP) or the pyrrolo-pyrazole inhibitor PHA-680626 at 2.4 and 2.1 A resolution, respectively. Plk1 adopts the typical kinase domain fold and crystallized in a conformation resembling the active state of other kinases. Comparison of the kinetic parameters determined for the (unphosphorylated) wild-type enzyme, as well as the T210V and T210D mutants, shows that the mutations primarily affect the kcat of the reaction, with little change in the apparent Km for the protein or nucleotide substrates (kcat = 0.0094, 0.0376, and 0.0049 s-1 and Km(ATP) = 3.2, 4.0, and 3.0 microM for WT, T210D, and T210V, respectively). The structure highlights features of the active site that can be exploited to obtain Plk1-specific inhibitors with selectivity over other kinases and Plk isoforms. These include the presence of a phenylalanine at the bottom of the ATP pocket, combined with a cysteine (as opposed to the more commonly found leucine) in the roof of the binding site, a pocket created by Leu132 in the hinge region, and a cluster of positively charged residues in the solvent-exposed area outside of the adenine pocket adjacent to the hinge region. Structure of the catalytic domain of human polo-like kinase 1.,Kothe M, Kohls D, Low S, Coli R, Cheng AC, Jacques SL, Johnson TL, Lewis C, Loh C, Nonomiya J, Sheils AL, Verdries KA, Wynn TA, Kuhn C, Ding YH Biochemistry. 2007 May 22;46(20):5960-71. Epub 2007 Apr 27. PMID:17461553[34] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|