7a85: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 1: Line 1:


==rsGreen0.7-K206A-F145L in the green-on state==
==rsGreen0.7-K206A-F145L in the green-on state==
<StructureSection load='7a85' size='340' side='right'caption='[[7a85]]' scene=''>
<StructureSection load='7a85' size='340' side='right'caption='[[7a85]], [[Resolution|resolution]] 1.52&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7A85 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7A85 FirstGlance]. <br>
<table><tr><td colspan='2'>[[7a85]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Aeqvi Aeqvi]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7A85 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7A85 FirstGlance]. <br>
</td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7a85 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7a85 OCA], [https://pdbe.org/7a85 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7a85 RCSB], [https://www.ebi.ac.uk/pdbsum/7a85 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7a85 ProSAT]</span></td></tr>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=PEG:DI(HYDROXYETHYL)ETHER'>PEG</scene>, <scene name='pdbligand=PGE:TRIETHYLENE+GLYCOL'>PGE</scene></td></tr>
<tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=CRO:{2-[(1R,2R)-1-AMINO-2-HYDROXYPROPYL]-4-(4-HYDROXYBENZYLIDENE)-5-OXO-4,5-DIHYDRO-1H-IMIDAZOL-1-YL}ACETIC+ACID'>CRO</scene></td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[4xow|4xow]], [[4xov|4xov]]</div></td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">gfp ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=6100 AEQVI])</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7a85 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7a85 OCA], [https://pdbe.org/7a85 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7a85 RCSB], [https://www.ebi.ac.uk/pdbsum/7a85 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7a85 ProSAT]</span></td></tr>
</table>
</table>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Anisotropic environments can drastically alter the spectroscopy and photochemistry of molecules, leading to complex structure-function relationships. We examined this using fluorescent proteins as easy-to-modify model systems. Starting from a single scaffold, we have developed a range of 27 photochromic fluorescent proteins that cover a broad range of spectroscopic properties, including the determination of 43 crystal structures. Correlation and principal component analysis confirmed the complex relationship between structure and spectroscopy, but also allowed us to identify consistent trends and to relate these to the spatial organization. We find that changes in spectroscopic properties can come about through multiple underlying mechanisms, of which polarity, hydrogen bonding and presence of water molecules are key modulators. We anticipate that our findings and rich structure/spectroscopy dataset can open opportunities for the development and evaluation of new and existing protein engineering methods.
Structure-Function Dataset Reveals Environment Effects within a Fluorescent Protein Model System.,De Zitter E, Hugelier S, Duwe S, Vandenberg W, Tebo AG, Van Meervelt L, Dedecker P Angew Chem Int Ed Engl. 2021 Feb 4. doi: 10.1002/anie.202015201. PMID:33543524<ref>PMID:33543524</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 7a85" style="background-color:#fffaf0;"></div>
== References ==
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Aeqvi]]
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: De Zitter E]]
[[Category: Dedecker, P]]
[[Category: Dedecker P]]
[[Category: Meervelt, L Van]]
[[Category: Van Meervelt L]]
[[Category: Zitter, E De]]
[[Category: Fluorescent protein]]
[[Category: Reversible photoswitchable fluorescent protein]]

Latest revision as of 12:05, 5 May 2021

rsGreen0.7-K206A-F145L in the green-on statersGreen0.7-K206A-F145L in the green-on state

Structural highlights

7a85 is a 1 chain structure with sequence from Aeqvi. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:,
NonStd Res:
Gene:gfp (AEQVI)
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Publication Abstract from PubMed

Anisotropic environments can drastically alter the spectroscopy and photochemistry of molecules, leading to complex structure-function relationships. We examined this using fluorescent proteins as easy-to-modify model systems. Starting from a single scaffold, we have developed a range of 27 photochromic fluorescent proteins that cover a broad range of spectroscopic properties, including the determination of 43 crystal structures. Correlation and principal component analysis confirmed the complex relationship between structure and spectroscopy, but also allowed us to identify consistent trends and to relate these to the spatial organization. We find that changes in spectroscopic properties can come about through multiple underlying mechanisms, of which polarity, hydrogen bonding and presence of water molecules are key modulators. We anticipate that our findings and rich structure/spectroscopy dataset can open opportunities for the development and evaluation of new and existing protein engineering methods.

Structure-Function Dataset Reveals Environment Effects within a Fluorescent Protein Model System.,De Zitter E, Hugelier S, Duwe S, Vandenberg W, Tebo AG, Van Meervelt L, Dedecker P Angew Chem Int Ed Engl. 2021 Feb 4. doi: 10.1002/anie.202015201. PMID:33543524[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. De Zitter E, Hugelier S, Duwe S, Vandenberg W, Tebo AG, Van Meervelt L, Dedecker P. Structure-Function Dataset Reveals Environment Effects within a Fluorescent Protein Model System. Angew Chem Int Ed Engl. 2021 Feb 4. doi: 10.1002/anie.202015201. PMID:33543524 doi:http://dx.doi.org/10.1002/anie.202015201

7a85, resolution 1.52Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA