1e9g: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
<StructureSection load='1e9g' size='340' side='right'caption='[[1e9g]], [[Resolution|resolution]] 1.15Å' scene=''> | <StructureSection load='1e9g' size='340' side='right'caption='[[1e9g]], [[Resolution|resolution]] 1.15Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[1e9g]] is a 2 chain structure with sequence from [ | <table><tr><td colspan='2'>[[1e9g]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Atcc_18824 Atcc 18824]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1E9G OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1E9G FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=MN:MANGANESE+(II)+ION'>MN</scene>, <scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene></td></tr> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MN:MANGANESE+(II)+ION'>MN</scene>, <scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene></td></tr> | ||
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[117e|117e]], [[1e6a|1e6a]], [[1huj|1huj]], [[1huk|1huk]], [[1wgi|1wgi]], [[1wgj|1wgj]], [[1ypp|1ypp]], [[8prk|8prk]]</td></tr> | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[117e|117e]], [[1e6a|1e6a]], [[1huj|1huj]], [[1huk|1huk]], [[1wgi|1wgi]], [[1wgj|1wgj]], [[1ypp|1ypp]], [[8prk|8prk]]</div></td></tr> | ||
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">PPA1 ([ | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">PPA1 ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=4932 ATCC 18824])</td></tr> | ||
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[ | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Inorganic_diphosphatase Inorganic diphosphatase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.6.1.1 3.6.1.1] </span></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1e9g FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1e9g OCA], [https://pdbe.org/1e9g PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1e9g RCSB], [https://www.ebi.ac.uk/pdbsum/1e9g PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1e9g ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
Line 31: | Line 31: | ||
==See Also== | ==See Also== | ||
*[[Inorganic pyrophosphatase|Inorganic pyrophosphatase]] | *[[Inorganic pyrophosphatase 3D structures|Inorganic pyrophosphatase 3D structures]] | ||
== References == | == References == | ||
<references/> | <references/> |
Revision as of 08:46, 28 April 2021
STRUCTURE OF INORGANIC PYROPHOSPHATASESTRUCTURE OF INORGANIC PYROPHOSPHATASE
Structural highlights
Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe wealth of kinetic and structural information makes inorganic pyrophosphatases (PPases) a good model system to study the details of enzymatic phosphoryl transfer. The enzyme accelerates metal-complexed phosphoryl transfer 10(10)-fold: but how? Our structures of the yeast PPase product complex at 1.15 A and fluoride-inhibited complex at 1.9 A visualize the active site in three different states: substrate-bound, immediate product bound, and relaxed product bound. These span the steps around chemical catalysis and provide strong evidence that a water molecule (O(nu)) directly attacks PPi with a pK(a) vastly lowered by coordination to two metal ions and D117. They also suggest that a low-barrier hydrogen bond (LBHB) forms between D117 and O(nu), in part because of steric crowding by W100 and N116. Direct visualization of the double bonds on the phosphates appears possible. The flexible side chains at the top of the active site absorb the motion involved in the reaction, which may help accelerate catalysis. Relaxation of the product allows a new nucleophile to be generated and creates symmetry in the elementary catalytic steps on the enzyme. We are thus moving closer to understanding phosphoryl transfer in PPases at the quantum mechanical level. Ultra-high resolution structures can thus tease out overlapping complexes and so are as relevant to discussion of enzyme mechanism as structures produced by time-resolved crystallography. Toward a quantum-mechanical description of metal-assisted phosphoryl transfer in pyrophosphatase.,Heikinheimo P, Tuominen V, Ahonen AK, Teplyakov A, Cooperman BS, Baykov AA, Lahti R, Goldman A Proc Natl Acad Sci U S A. 2001 Mar 13;98(6):3121-6. Epub 2001 Mar 6. PMID:11248042[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|