1ld3: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
<StructureSection load='1ld3' size='340' side='right'caption='[[1ld3]], [[Resolution|resolution]] 2.60Å' scene=''> | <StructureSection load='1ld3' size='340' side='right'caption='[[1ld3]], [[Resolution|resolution]] 2.60Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[1ld3]] is a 1 chain structure with sequence from [ | <table><tr><td colspan='2'>[[1ld3]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/"bacillus_globigii"_migula_1900 "bacillus globigii" migula 1900]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1LD3 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1LD3 FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | ||
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1doz|1doz]], [[1c1h|1c1h]], [[1c9e|1c9e]]</td></tr> | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[1doz|1doz]], [[1c1h|1c1h]], [[1c9e|1c9e]]</div></td></tr> | ||
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[ | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Ferrochelatase Ferrochelatase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=4.99.1.1 4.99.1.1] </span></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1ld3 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1ld3 OCA], [https://pdbe.org/1ld3 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1ld3 RCSB], [https://www.ebi.ac.uk/pdbsum/1ld3 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1ld3 ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
[[ | [[https://www.uniprot.org/uniprot/HEMH_BACSU HEMH_BACSU]] Catalyzes the ferrous insertion into protoporphyrin IX. | ||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] |
Revision as of 11:51, 21 April 2021
Crystal Structure of B. subilis ferrochelatase with Zn(2+) bound at the active site.Crystal Structure of B. subilis ferrochelatase with Zn(2+) bound at the active site.
Structural highlights
Function[HEMH_BACSU] Catalyzes the ferrous insertion into protoporphyrin IX. Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedFerrochelatase, the terminal enzyme in heme biosynthesis, catalyses metal insertion into protoporphyrin IX. The location of the metal binding site with respect to the bound porphyrin substrate and the mode of metal binding are of central importance for understanding the mechanism of porphyrin metallation. In this work we demonstrate that Zn(2+), which is commonly used as substrate in assays of the ferrochelatase reaction, and Cd(2+), an inhibitor of the enzyme, bind to the invariant amino acids His183 and Glu264 and water molecules, all located within the porphyrin binding cleft. On the other hand, Mg(2+), which has been shown to bind close to the surface at 7 A from His183, was largely absent from its site. Activity measurements demonstrate that Mg(2+) has a stimulatory effect on the enzyme, lowering K(M) for Zn(2+) from 55 to 24 micro M. Changing one of the Mg(2+) binding residues, Glu272, to serine abolishes the effect of Mg(2+). It is proposed that prior to metal insertion the metal may form a sitting-atop (SAT) complex with the invariant His-Glu couple and the porphyrin. Metal binding to the Mg(2+) site may stimulate metal release from the protein ligands and its insertion into the porphyrin. Metal binding to Bacillus subtilis ferrochelatase and interaction between metal sites.,Lecerof D, Fodje MN, Alvarez Leon R, Olsson U, Hansson A, Sigfridsson E, Ryde U, Hansson M, Al-Karadaghi S J Biol Inorg Chem. 2003 Apr;8(4):452-8. Epub 2003 Jan 18. PMID:12761666[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|