1kms: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
<StructureSection load='1kms' size='340' side='right'caption='[[1kms]], [[Resolution|resolution]] 1.09Å' scene=''> | <StructureSection load='1kms' size='340' side='right'caption='[[1kms]], [[Resolution|resolution]] 1.09Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[1kms]] is a 1 chain structure with sequence from [ | <table><tr><td colspan='2'>[[1kms]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1KMS OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1KMS FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=LIH:6-([5-QUINOLYLAMINO]METHYL)-2,4-DIAMINO-5-METHYLPYRIDO[2,3-D]PYRIMIDINE'>LIH</scene>, <scene name='pdbligand=NDP:NADPH+DIHYDRO-NICOTINAMIDE-ADENINE-DINUCLEOTIDE+PHOSPHATE'>NDP</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=LIH:6-([5-QUINOLYLAMINO]METHYL)-2,4-DIAMINO-5-METHYLPYRIDO[2,3-D]PYRIMIDINE'>LIH</scene>, <scene name='pdbligand=NDP:NADPH+DIHYDRO-NICOTINAMIDE-ADENINE-DINUCLEOTIDE+PHOSPHATE'>NDP</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | ||
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1kmv|1kmv]]</td></tr> | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[1kmv|1kmv]]</div></td></tr> | ||
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[ | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Dihydrofolate_reductase Dihydrofolate reductase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.5.1.3 1.5.1.3] </span></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1kms FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1kms OCA], [https://pdbe.org/1kms PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1kms RCSB], [https://www.ebi.ac.uk/pdbsum/1kms PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1kms ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Disease == | == Disease == | ||
[[ | [[https://www.uniprot.org/uniprot/DYR_HUMAN DYR_HUMAN]] Defects in DHFR are the cause of megaloblastic anemia due to dihydrofolate reductase deficiency (DHFRD) [MIM:[https://omim.org/entry/613839 613839]]. DHFRD is an inborn error of metabolism, characterized by megaloblastic anemia and/or pancytopenia, severe cerebral folate deficiency, and cerebral tetrahydrobiopterin deficiency. Clinical features include variable neurologic symptoms, ranging from severe developmental delay and generalized seizures in infancy, to childhood absence epilepsy with learning difficulties, to lack of symptoms.<ref>PMID:21310276</ref> <ref>PMID:21310277</ref> | ||
== Function == | == Function == | ||
[[ | [[https://www.uniprot.org/uniprot/DYR_HUMAN DYR_HUMAN]] Key enzyme in folate metabolism. Contributes to the de novo mitochondrial thymidylate biosynthesis pathway. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis. Binds its own mRNA and that of DHFRL1.<ref>PMID:21876188</ref> <ref>PMID:12096917</ref> | ||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] |
Revision as of 11:49, 21 April 2021
HUMAN DIHYDROFOLATE REDUCTASE COMPLEXED WITH NADPH AND 6-([5-QUINOLYLAMINO]METHYL)-2,4-DIAMINO-5-METHYLPYRIDO[2,3-D]PYRIMIDINE (SRI-9439), A LIPOPHILIC ANTIFOLATEHUMAN DIHYDROFOLATE REDUCTASE COMPLEXED WITH NADPH AND 6-([5-QUINOLYLAMINO]METHYL)-2,4-DIAMINO-5-METHYLPYRIDO[2,3-D]PYRIMIDINE (SRI-9439), A LIPOPHILIC ANTIFOLATE
Structural highlights
Disease[DYR_HUMAN] Defects in DHFR are the cause of megaloblastic anemia due to dihydrofolate reductase deficiency (DHFRD) [MIM:613839]. DHFRD is an inborn error of metabolism, characterized by megaloblastic anemia and/or pancytopenia, severe cerebral folate deficiency, and cerebral tetrahydrobiopterin deficiency. Clinical features include variable neurologic symptoms, ranging from severe developmental delay and generalized seizures in infancy, to childhood absence epilepsy with learning difficulties, to lack of symptoms.[1] [2] Function[DYR_HUMAN] Key enzyme in folate metabolism. Contributes to the de novo mitochondrial thymidylate biosynthesis pathway. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis. Binds its own mRNA and that of DHFRL1.[3] [4] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe crystal structures of two human dihydrofolate reductase (hDHFR) ternary complexes, each with bound NADPH cofactor and a lipophilic antifolate inhibitor, have been determined at atomic resolution. The potent inhibitors 6-([5-quinolylamino]methyl)-2,4-diamino-5-methylpyrido[2,3-d]pyrimidine (SRI-9439) and (Z)-6-(2-[2,5-dimethoxyphenyl]ethen-1-yl)-2,4-diamino-5-methylpyrido[2,3-d ]pyrimidine (SRI-9662) were developed at Southern Research Institute against Toxoplasma gondii DHFR-thymidylate synthase. The 5-deazapteridine ring of each inhibitor adopts an unusual puckered conformation that enables the formation of identical contacts in the active site. Conversely, the quinoline and dimethoxybenzene moieties exhibit distinct binding characteristics that account for the differences in inhibitory activity. In both structures, a salt-bridge is formed between Arg70 in the active site and Glu44 from a symmetry-related molecule in the crystal lattice that mimics the binding of methotrexate to DHFR. Atomic structures of human dihydrofolate reductase complexed with NADPH and two lipophilic antifolates at 1.09 a and 1.05 a resolution.,Klon AE, Heroux A, Ross LJ, Pathak V, Johnson CA, Piper JR, Borhani DW J Mol Biol. 2002 Jul 12;320(3):677-93. PMID:12096917[5] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|