2bbs: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Human deltaF508 NBD1 with three solubilizing mutations== | ==Human deltaF508 NBD1 with three solubilizing mutations== | ||
<StructureSection load='2bbs' size='340' side='right' caption='[[2bbs]], [[Resolution|resolution]] 2.05Å' scene=''> | <StructureSection load='2bbs' size='340' side='right'caption='[[2bbs]], [[Resolution|resolution]] 2.05Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[2bbs]] is a 2 chain structure with sequence from [ | <table><tr><td colspan='2'>[[2bbs]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2BBS OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2BBS FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ATP:ADENOSINE-5-TRIPHOSPHATE'>ATP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ATP:ADENOSINE-5-TRIPHOSPHATE'>ATP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> | ||
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2bbo|2bbo]], [[2bbt|2bbt]]</td></tr> | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[2bbo|2bbo]], [[2bbt|2bbt]]</div></td></tr> | ||
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">CFTR, ABCC7 ([ | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">CFTR, ABCC7 ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2bbs FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2bbs OCA], [https://pdbe.org/2bbs PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2bbs RCSB], [https://www.ebi.ac.uk/pdbsum/2bbs PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2bbs ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Disease == | == Disease == | ||
[[ | [[https://www.uniprot.org/uniprot/CFTR_HUMAN CFTR_HUMAN]] Defects in CFTR are the cause of cystic fibrosis (CF) [MIM:[https://omim.org/entry/219700 219700]]; also known as mucoviscidosis. CF is the most common genetic disease in the Caucasian population, with a prevalence of about 1 in 2'000 live births. Inheritance is autosomal recessive. CF is a common generalized disorder of exocrine gland function which impairs clearance of secretions in a variety of organs. It is characterized by the triad of chronic bronchopulmonary disease (with recurrent respiratory infections), pancreatic insufficiency (which leads to malabsorption and growth retardation) and elevated sweat electrolytes.<ref>PMID:1695717</ref> <ref>PMID:2236053</ref> <ref>PMID:1710600</ref> <ref>PMID:1284466</ref> <ref>PMID:1284468</ref> <ref>PMID:1284530</ref> <ref>PMID:1284529</ref> <ref>PMID:7680525</ref> <ref>PMID:7683628</ref> <ref>PMID:7683954</ref> <ref>PMID:7505694</ref> <ref>PMID:7504969</ref> <ref>PMID:7522211</ref> <ref>PMID:7513296</ref> <ref>PMID:7525450</ref> <ref>PMID:7520022</ref> <ref>PMID:7524913</ref> <ref>PMID:7524909</ref> <ref>PMID:7517264</ref> <ref>PMID:8081395</ref> <ref>PMID:7544319</ref> <ref>PMID:8522333</ref> <ref>PMID:7537150</ref> <ref>PMID:7541273</ref> <ref>PMID:7581407</ref> <ref>PMID:7543567</ref> <ref>PMID:7541510</ref> <ref>PMID:8800923</ref> <ref>PMID:8829633</ref> <ref>PMID:8723693</ref> <ref>PMID:8723695</ref> <ref>PMID:8956039</ref> <ref>PMID:9101301</ref> <ref>PMID:9222768</ref> <ref>PMID:9375855</ref> <ref>PMID:9401006</ref> <ref>PMID:9443874</ref> <ref>PMID:9521595</ref> <ref>PMID:9921909</ref> <ref>PMID:9736778</ref> <ref>PMID:9482579</ref> <ref>PMID:9554753</ref> <ref>PMID:9452048</ref> <ref>PMID:9452054</ref> <ref>PMID:9452073</ref> <ref>PMID:10094564</ref> Defects in CFTR are the cause of congenital bilateral absence of the vas deferens (CBAVD) [MIM:[https://omim.org/entry/277180 277180]]. CBAVD is an important cause of sterility in men and could represent an incomplete form of cystic fibrosis, as the majority of men suffering from cystic fibrosis lack the vas deferens.<ref>PMID:7529962</ref> <ref>PMID:7539342</ref> <ref>PMID:9067761</ref> <ref>PMID:10651488</ref> [:] | ||
== Function == | == Function == | ||
[[ | [[https://www.uniprot.org/uniprot/CFTR_HUMAN CFTR_HUMAN]] Involved in the transport of chloride ions. May regulate bicarbonate secretion and salvage in epithelial cells by regulating the SLC4A7 transporter. Can inhibit the chloride channel activity of ANO1.<ref>PMID:22178883</ref> | ||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Line 34: | Line 34: | ||
==See Also== | ==See Also== | ||
*[[ABC transporter|ABC transporter | *[[ABC transporter 3D structures|ABC transporter 3D structures]] | ||
== References == | == References == | ||
<references/> | <references/> | ||
Line 41: | Line 40: | ||
</StructureSection> | </StructureSection> | ||
[[Category: Human]] | [[Category: Human]] | ||
[[Category: Large Structures]] | |||
[[Category: Conners, K]] | [[Category: Conners, K]] | ||
[[Category: Emtage, S]] | [[Category: Emtage, S]] |
Revision as of 14:39, 3 February 2021
Human deltaF508 NBD1 with three solubilizing mutationsHuman deltaF508 NBD1 with three solubilizing mutations
Structural highlights
Disease[CFTR_HUMAN] Defects in CFTR are the cause of cystic fibrosis (CF) [MIM:219700]; also known as mucoviscidosis. CF is the most common genetic disease in the Caucasian population, with a prevalence of about 1 in 2'000 live births. Inheritance is autosomal recessive. CF is a common generalized disorder of exocrine gland function which impairs clearance of secretions in a variety of organs. It is characterized by the triad of chronic bronchopulmonary disease (with recurrent respiratory infections), pancreatic insufficiency (which leads to malabsorption and growth retardation) and elevated sweat electrolytes.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] Defects in CFTR are the cause of congenital bilateral absence of the vas deferens (CBAVD) [MIM:277180]. CBAVD is an important cause of sterility in men and could represent an incomplete form of cystic fibrosis, as the majority of men suffering from cystic fibrosis lack the vas deferens.[47] [48] [49] [50] [:] Function[CFTR_HUMAN] Involved in the transport of chloride ions. May regulate bicarbonate secretion and salvage in epithelial cells by regulating the SLC4A7 transporter. Can inhibit the chloride channel activity of ANO1.[51] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe DeltaF508 mutation in nucleotide-binding domain 1 (NBD1) of the cystic fibrosis transmembrane conductance regulator (CFTR) is the predominant cause of cystic fibrosis. Previous biophysical studies on human F508 and DeltaF508 domains showed only local structural changes restricted to residues 509-511 and only minor differences in folding rate and stability. These results were remarkable because DeltaF508 was widely assumed to perturb domain folding based on the fact that it prevents trafficking of CFTR out of the endoplasmic reticulum. However, the previously reported crystal structures did not come from matched F508 and DeltaF508 constructs, and the DeltaF508 structure contained additional mutations that were required to obtain sufficient protein solubility. In this article, we present additional biophysical studies of NBD1 designed to address these ambiguities. Mass spectral measurements of backbone amide (1)H/(2)H exchange rates in matched F508 and DeltaF508 constructs reveal that DeltaF508 increases backbone dynamics at residues 509-511 and the adjacent protein segments but not elsewhere in NBD1. These measurements also confirm a high level of flexibility in the protein segments exhibiting variable conformations in the crystal structures. We additionally present crystal structures of a broader set of human NBD1 constructs, including one harboring the native F508 residue and others harboring the DeltaF508 mutation in the presence of fewer and different solubilizing mutations. The only consistent conformational difference is observed at residues 509-511. The side chain of residue V510 in this loop is mostly buried in all non-DeltaF508 structures but completely solvent exposed in all DeltaF508 structures. These results reinforce the importance of the perturbation DeltaF508 causes in the surface topography of NBD1 in a region likely to mediate contact with the transmembrane domains of CFTR. However, they also suggest that increased exposure of the 509-511 loop and increased dynamics in its vicinity could promote aggregation in vitro and aberrant intermolecular interactions that impede trafficking in vivo. Structure and dynamics of NBD1 from CFTR characterized using crystallography and hydrogen/deuterium exchange mass spectrometry.,Lewis HA, Wang C, Zhao X, Hamuro Y, Conners K, Kearins MC, Lu F, Sauder JM, Molnar KS, Coales SJ, Maloney PC, Guggino WB, Wetmore DR, Weber PC, Hunt JF J Mol Biol. 2010 Feb 19;396(2):406-30. Epub 2009 Nov 26. PMID:19944699[52] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|