2b0q: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Crystal Structure Of 3',5"-Aminoglycoside Phosphotransferase Type IIIa ADP Neomycin B Complex== | ==Crystal Structure Of 3',5"-Aminoglycoside Phosphotransferase Type IIIa ADP Neomycin B Complex== | ||
<StructureSection load='2b0q' size='340' side='right' caption='[[2b0q]], [[Resolution|resolution]] 2.70Å' scene=''> | <StructureSection load='2b0q' size='340' side='right'caption='[[2b0q]], [[Resolution|resolution]] 2.70Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[2b0q]] is a 1 chain structure with sequence from [ | <table><tr><td colspan='2'>[[2b0q]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/"enterococcus_proteiformis"_thiercelin_and_jouhaud_1903 "enterococcus proteiformis" thiercelin and jouhaud 1903]. This structure supersedes the now removed PDB entry [http://oca.weizmann.ac.il/oca-bin/send-pdb?obs=1&id=1l8u 1l8u]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2B0Q OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2B0Q FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ADP:ADENOSINE-5-DIPHOSPHATE'>ADP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=NMY:NEOMYCIN'>NMY</scene></td></tr> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ADP:ADENOSINE-5-DIPHOSPHATE'>ADP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=NMY:NEOMYCIN'>NMY</scene></td></tr> | ||
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1j7i|1j7i]], [[1j7l|1j7l]], [[1j7u|1j7u]], [[1l8t|1l8t]]</td></tr> | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[1j7i|1j7i]], [[1j7l|1j7l]], [[1j7u|1j7u]], [[1l8t|1l8t]]</div></td></tr> | ||
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">aphA ([ | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">aphA ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=1351 "Enterococcus proteiformis" Thiercelin and Jouhaud 1903])</td></tr> | ||
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[ | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Kanamycin_kinase Kanamycin kinase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.1.95 2.7.1.95] </span></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2b0q FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2b0q OCA], [https://pdbe.org/2b0q PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2b0q RCSB], [https://www.ebi.ac.uk/pdbsum/2b0q PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2b0q ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
[[ | [[https://www.uniprot.org/uniprot/KKA3_ENTFL KKA3_ENTFL]] Resistance to kanamycin and structurally-related aminoglycosides, including amikacin. | ||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Line 33: | Line 33: | ||
==See Also== | ==See Also== | ||
*[[Phosphotransferase|Phosphotransferase]] | *[[Phosphotransferase 3D structures|Phosphotransferase 3D structures]] | ||
== References == | == References == | ||
<references/> | <references/> | ||
Line 40: | Line 40: | ||
[[Category: Enterococcus proteiformis thiercelin and jouhaud 1903]] | [[Category: Enterococcus proteiformis thiercelin and jouhaud 1903]] | ||
[[Category: Kanamycin kinase]] | [[Category: Kanamycin kinase]] | ||
[[Category: Large Structures]] | |||
[[Category: Berghuis, A M]] | [[Category: Berghuis, A M]] | ||
[[Category: Fong, D H]] | [[Category: Fong, D H]] | ||
[[Category: Protein kinase-like]] | [[Category: Protein kinase-like]] | ||
[[Category: Transferase]] | [[Category: Transferase]] |
Revision as of 11:41, 27 January 2021
Crystal Structure Of 3',5"-Aminoglycoside Phosphotransferase Type IIIa ADP Neomycin B ComplexCrystal Structure Of 3',5"-Aminoglycoside Phosphotransferase Type IIIa ADP Neomycin B Complex
Structural highlights
Function[KKA3_ENTFL] Resistance to kanamycin and structurally-related aminoglycosides, including amikacin. Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe misuse of antibiotics has selected for bacteria that have evolved mechanisms for evading the effects of these drugs. For aminoglycosides, a group of clinically important bactericidal antibiotics that target the A-site of the 16S ribosomal RNA, the most common mode of resistance is enzyme-catalyzed chemical modification of the drug. While aminoglycosides are structurally diverse, a single enzyme can confer resistance to many of these antibiotics. For example, the aminoglycoside kinase APH(3')-IIIa, produced by pathogenic Gram-positive bacteria such as enterococci and staphylococci, is capable of detoxifying at least 10 distinct aminoglycosides. Here we describe the crystal structures of APH(3')-IIIa in complex with ADP and kanamycin A or neomycin B. These structures reveal that the basis for this enzyme's substrate promiscuity is the presence of two alternative subsites in the antibiotic binding pocket. Furthermore, comparison between the A-site of the bacterial ribosome and APH(3')-IIIa shows that mimicry is the second major factor in dictating the substrate spectrum of APH(3')-IIIa. These results suggest a potential strategy for drug design aimed at circumventing antibiotic resistance. Substrate promiscuity of an aminoglycoside antibiotic resistance enzyme via target mimicry.,Fong DH, Berghuis AM EMBO J. 2002 May 15;21(10):2323-31. PMID:12006485[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|