5qea: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOPL000733a== | ==PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOPL000733a== | ||
<StructureSection load='5qea' size='340' side='right' caption='[[5qea]], [[Resolution|resolution]] 1.74Å' scene=''> | <StructureSection load='5qea' size='340' side='right'caption='[[5qea]], [[Resolution|resolution]] 1.74Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[5qea]] is a 1 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5QEA OCA]. For a <b>guided tour on the structure components</b> use [http:// | <table><tr><td colspan='2'>[[5qea]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5QEA OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=5QEA FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=JHS:N-[(4-phenyloxan-4-yl)methyl]acetamide'>JHS</scene>, <scene name='pdbligand=TRS:2-AMINO-2-HYDROXYMETHYL-PROPANE-1,3-DIOL'>TRS</scene></td></tr> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=JHS:N-[(4-phenyloxan-4-yl)methyl]acetamide'>JHS</scene>, <scene name='pdbligand=TRS:2-AMINO-2-HYDROXYMETHYL-PROPANE-1,3-DIOL'>TRS</scene></td></tr> | ||
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">PTPN1, PTP1B ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr> | |||
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Protein-tyrosine-phosphatase Protein-tyrosine-phosphatase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.1.3.48 3.1.3.48] </span></td></tr> | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Protein-tyrosine-phosphatase Protein-tyrosine-phosphatase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.1.3.48 3.1.3.48] </span></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http:// | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=5qea FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5qea OCA], [http://pdbe.org/5qea PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5qea RCSB], [http://www.ebi.ac.uk/pdbsum/5qea PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5qea ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
[[http://www.uniprot.org/uniprot/PTN1_HUMAN PTN1_HUMAN]] Tyrosine-protein phosphatase which acts as a regulator of endoplasmic reticulum unfolded protein response. Mediates dephosphorylation of EIF2AK3/PERK; inactivating the protein kinase activity of EIF2AK3/PERK. May play an important role in CKII- and p60c-src-induced signal transduction cascades. May regulate the EFNA5-EPHA3 signaling pathway which modulates cell reorganization and cell-cell repulsion.<ref>PMID:21135139</ref> <ref>PMID:22169477</ref> | [[http://www.uniprot.org/uniprot/PTN1_HUMAN PTN1_HUMAN]] Tyrosine-protein phosphatase which acts as a regulator of endoplasmic reticulum unfolded protein response. Mediates dephosphorylation of EIF2AK3/PERK; inactivating the protein kinase activity of EIF2AK3/PERK. May play an important role in CKII- and p60c-src-induced signal transduction cascades. May regulate the EFNA5-EPHA3 signaling pathway which modulates cell reorganization and cell-cell repulsion.<ref>PMID:21135139</ref> <ref>PMID:22169477</ref> | ||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Allostery is an inherent feature of proteins, but it remains challenging to reveal the mechanisms by which allosteric signals propagate. A clearer understanding of this intrinsic circuitry would afford new opportunities to modulate protein function. Here we have identified allosteric sites in protein tyrosine phosphatase 1B (PTP1B) by combining multiple-temperature X-ray crystallography experiments and structure determination from hundreds of individual small-molecule fragment soaks. New modeling approaches reveal 'hidden' low-occupancy conformational states for protein and ligands. Our results converge on allosteric sites that are conformationally coupled to the active-site WPD loop and are hotspots for fragment binding. Targeting one of these sites with covalently tethered molecules or mutations allosterically inhibits enzyme activity. Overall, this work demonstrates how the ensemble nature of macromolecular structure, revealed here by multitemperature crystallography, can elucidate allosteric mechanisms and open new doors for long-range control of protein function. | |||
An expanded allosteric network in PTP1B by multitemperature crystallography, fragment screening, and covalent tethering.,Keedy DA, Hill ZB, Biel JT, Kang E, Rettenmaier TJ, Brandao-Neto J, Pearce NM, von Delft F, Wells JA, Fraser JS Elife. 2018 Jun 7;7. pii: 36307. doi: 10.7554/eLife.36307. PMID:29877794<ref>PMID:29877794</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 5qea" style="background-color:#fffaf0;"></div> | |||
==See Also== | |||
*[[Tyrosine phosphatase 3D structures|Tyrosine phosphatase 3D structures]] | |||
== References == | == References == | ||
<references/> | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: Human]] | |||
[[Category: Large Structures]] | |||
[[Category: Protein-tyrosine-phosphatase]] | [[Category: Protein-tyrosine-phosphatase]] | ||
[[Category: Biel, J T]] | [[Category: Biel, J T]] |
Revision as of 14:02, 16 September 2020
PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOPL000733aPanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOPL000733a
Structural highlights
Function[PTN1_HUMAN] Tyrosine-protein phosphatase which acts as a regulator of endoplasmic reticulum unfolded protein response. Mediates dephosphorylation of EIF2AK3/PERK; inactivating the protein kinase activity of EIF2AK3/PERK. May play an important role in CKII- and p60c-src-induced signal transduction cascades. May regulate the EFNA5-EPHA3 signaling pathway which modulates cell reorganization and cell-cell repulsion.[1] [2] Publication Abstract from PubMedAllostery is an inherent feature of proteins, but it remains challenging to reveal the mechanisms by which allosteric signals propagate. A clearer understanding of this intrinsic circuitry would afford new opportunities to modulate protein function. Here we have identified allosteric sites in protein tyrosine phosphatase 1B (PTP1B) by combining multiple-temperature X-ray crystallography experiments and structure determination from hundreds of individual small-molecule fragment soaks. New modeling approaches reveal 'hidden' low-occupancy conformational states for protein and ligands. Our results converge on allosteric sites that are conformationally coupled to the active-site WPD loop and are hotspots for fragment binding. Targeting one of these sites with covalently tethered molecules or mutations allosterically inhibits enzyme activity. Overall, this work demonstrates how the ensemble nature of macromolecular structure, revealed here by multitemperature crystallography, can elucidate allosteric mechanisms and open new doors for long-range control of protein function. An expanded allosteric network in PTP1B by multitemperature crystallography, fragment screening, and covalent tethering.,Keedy DA, Hill ZB, Biel JT, Kang E, Rettenmaier TJ, Brandao-Neto J, Pearce NM, von Delft F, Wells JA, Fraser JS Elife. 2018 Jun 7;7. pii: 36307. doi: 10.7554/eLife.36307. PMID:29877794[3] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|