5l5e: Difference between revisions

No edit summary
No edit summary
Line 1: Line 1:
{{Large structure}}
 
==Yeast 20S proteasome with human beta5i (1-138) and human beta6 (97-111; 118-133) in complex with carfilzomib==
==Yeast 20S proteasome with human beta5i (1-138) and human beta6 (97-111; 118-133) in complex with carfilzomib==
<StructureSection load='5l5e' size='340' side='right' caption='[[5l5e]], [[Resolution|resolution]] 2.90&Aring;' scene=''>
<StructureSection load='5l5e' size='340' side='right'caption='[[5l5e]], [[Resolution|resolution]] 2.90&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[5l5e]] is a 28 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5L5E OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5L5E FirstGlance]. <br>
<table><tr><td colspan='2'>[[5l5e]] is a 28 chain structure with sequence from [http://en.wikipedia.org/wiki/Baker's_yeast Baker's yeast] and [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5L5E OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=5L5E FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=3BV:N-{(2S)-2-[(MORPHOLIN-4-YLACETYL)AMINO]-4-PHENYLBUTANOYL}-L-LEUCYL-N-[(2R,3S,4S)-1,3-DIHYDROXY-2,6-DIMETHYLHEPTAN-4-YL]-L-PHENYLALANINAMIDE'>3BV</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=MES:2-(N-MORPHOLINO)-ETHANESULFONIC+ACID'>MES</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=3BV:N-{(2S)-2-[(MORPHOLIN-4-YLACETYL)AMINO]-4-PHENYLBUTANOYL}-L-LEUCYL-N-[(2R,3S,4S)-1,3-DIHYDROXY-2,6-DIMETHYLHEPTAN-4-YL]-L-PHENYLALANINAMIDE'>3BV</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=MES:2-(N-MORPHOLINO)-ETHANESULFONIC+ACID'>MES</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[5cz4|5cz4]]</td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[5cz4|5cz4]]</td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">PRE8, PRS4, YML092C ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=559292 Baker's yeast]), PRE1, YER012W ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=559292 Baker's yeast]), PRE2, DOA3, PRG1, YPR103W, P8283.10 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN]), PRE7, PRS3, PTS1, YBL041W, YBL0407 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN]), PRE4, YFR050C ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=559292 Baker's yeast]), PRE3, YJL001W, J1407 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=559292 Baker's yeast]), PRE9, PRS5, YGR135W ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=559292 Baker's yeast]), PRE6, YOL038W ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=559292 Baker's yeast]), PUP2, DOA5, YGR253C, G9155 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=559292 Baker's yeast]), PRE5, YMR314W, YM9924.06 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=559292 Baker's yeast]), PRE10, PRC1, PRS1, YOR362C, O6650 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=559292 Baker's yeast]), SCL1, PRC2, PRS2, YGL011C ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=559292 Baker's yeast]), PUP1, YOR157C ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=559292 Baker's yeast]), PUP3, YER094C ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=559292 Baker's yeast])</td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Proteasome_endopeptidase_complex Proteasome endopeptidase complex], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.4.25.1 3.4.25.1] </span></td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Proteasome_endopeptidase_complex Proteasome endopeptidase complex], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.4.25.1 3.4.25.1] </span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5l5e FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5l5e OCA], [http://pdbe.org/5l5e PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5l5e RCSB], [http://www.ebi.ac.uk/pdbsum/5l5e PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5l5e ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=5l5e FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5l5e OCA], [http://pdbe.org/5l5e PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5l5e RCSB], [http://www.ebi.ac.uk/pdbsum/5l5e PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5l5e ProSAT]</span></td></tr>
</table>
</table>
{{Large structure}}
== Disease ==
== Disease ==
[[http://www.uniprot.org/uniprot/PSB8_HUMAN PSB8_HUMAN]] CANDLE syndrome;Nakajo-Nishimura syndrome;JMP syndrome. The disease is caused by mutations affecting the gene represented in this entry.  
[[http://www.uniprot.org/uniprot/PSB8_HUMAN PSB8_HUMAN]] CANDLE syndrome;Nakajo-Nishimura syndrome;JMP syndrome. The disease is caused by mutations affecting the gene represented in this entry.  
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/PSA7_YEAST PSA7_YEAST]] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. [[http://www.uniprot.org/uniprot/PSB8_HUMAN PSB8_HUMAN]] The proteasome is a multicatalytic proteinase complex which is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. The proteasome has an ATP-dependent proteolytic activity. This subunit is involved in antigen processing to generate class I binding peptides. Replacement of PSMB5 by PSMB8 increases the capacity of the immunoproteasome to cleave model peptides after hydrophobic and basic residues. Acts as a major component of interferon gamma-induced sensitivity. Plays a key role in apoptosis via the degradation of the apoptotic inhibitor MCL1. May be involved in the inflammatory response pathway. In cancer cells, substitution of isoform 1 (E2) by isoform 2 (E1) results in immunoproteasome deficiency. Required for the differentiation of preadipocytes into adipocytes.<ref>PMID:16423992</ref> <ref>PMID:19443843</ref> <ref>PMID:21881205</ref> <ref>PMID:8163024</ref>  [[http://www.uniprot.org/uniprot/PSA4_YEAST PSA4_YEAST]] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. [[http://www.uniprot.org/uniprot/PSA1_YEAST PSA1_YEAST]] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. [[http://www.uniprot.org/uniprot/PSB3_YEAST PSB3_YEAST]] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. This subunit may participate in the trypsin-like activity of the enzyme complex. [[http://www.uniprot.org/uniprot/PSA3_YEAST PSA3_YEAST]] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. [[http://www.uniprot.org/uniprot/PSB6_YEAST PSB6_YEAST]] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. [[http://www.uniprot.org/uniprot/PSB1_YEAST PSB1_YEAST]] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. PRE3 and PRE4 are necessary for the peptidyl-glutamyl-peptide-hydrolyzing activity. This subunit is necessary for the peptidylglutamyl-peptide hydrolyzing activity. [[http://www.uniprot.org/uniprot/PSB2_YEAST PSB2_YEAST]] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. [[http://www.uniprot.org/uniprot/PSA5_YEAST PSA5_YEAST]] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. [[http://www.uniprot.org/uniprot/PSA2_YEAST PSA2_YEAST]] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. [[http://www.uniprot.org/uniprot/PSB4_YEAST PSB4_YEAST]] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. This subunit has a chymotrypsin-like activity. [[http://www.uniprot.org/uniprot/PSB7_YEAST PSB7_YEAST]] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. PRE3 and PRE4 are necessary for the peptidyl-glutamyl-peptide-hydrolyzing activity.<ref>PMID:8381431</ref>  [[http://www.uniprot.org/uniprot/PSA6_YEAST PSA6_YEAST]] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity.  
[[http://www.uniprot.org/uniprot/PSB8_HUMAN PSB8_HUMAN]] The proteasome is a multicatalytic proteinase complex which is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. The proteasome has an ATP-dependent proteolytic activity. This subunit is involved in antigen processing to generate class I binding peptides. Replacement of PSMB5 by PSMB8 increases the capacity of the immunoproteasome to cleave model peptides after hydrophobic and basic residues. Acts as a major component of interferon gamma-induced sensitivity. Plays a key role in apoptosis via the degradation of the apoptotic inhibitor MCL1. May be involved in the inflammatory response pathway. In cancer cells, substitution of isoform 1 (E2) by isoform 2 (E1) results in immunoproteasome deficiency. Required for the differentiation of preadipocytes into adipocytes.<ref>PMID:16423992</ref> <ref>PMID:19443843</ref> <ref>PMID:21881205</ref> <ref>PMID:8163024</ref> [[http://www.uniprot.org/uniprot/PSA1_YEAST PSA1_YEAST]] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. [[http://www.uniprot.org/uniprot/PSA3_YEAST PSA3_YEAST]] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. [[http://www.uniprot.org/uniprot/PSA2_YEAST PSA2_YEAST]] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. [[http://www.uniprot.org/uniprot/PSB7_YEAST PSB7_YEAST]] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. PRE3 and PRE4 are necessary for the peptidyl-glutamyl-peptide-hydrolyzing activity.<ref>PMID:8381431</ref>  [[http://www.uniprot.org/uniprot/PSA7_YEAST PSA7_YEAST]] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. [[http://www.uniprot.org/uniprot/PSA4_YEAST PSA4_YEAST]] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. [[http://www.uniprot.org/uniprot/PSB3_YEAST PSB3_YEAST]] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. This subunit may participate in the trypsin-like activity of the enzyme complex. [[http://www.uniprot.org/uniprot/PSB6_YEAST PSB6_YEAST]] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. [[http://www.uniprot.org/uniprot/PSB1_YEAST PSB1_YEAST]] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. PRE3 and PRE4 are necessary for the peptidyl-glutamyl-peptide-hydrolyzing activity.  This subunit is necessary for the peptidylglutamyl-peptide hydrolyzing activity. [[http://www.uniprot.org/uniprot/PSB2_YEAST PSB2_YEAST]] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. [[http://www.uniprot.org/uniprot/PSA5_YEAST PSA5_YEAST]] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. [[http://www.uniprot.org/uniprot/PSB4_YEAST PSB4_YEAST]] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. This subunit has a chymotrypsin-like activity. [[http://www.uniprot.org/uniprot/PSA6_YEAST PSA6_YEAST]] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity.  
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
== Publication Abstract from PubMed ==
Line 23: Line 23:
</div>
</div>
<div class="pdbe-citations 5l5e" style="background-color:#fffaf0;"></div>
<div class="pdbe-citations 5l5e" style="background-color:#fffaf0;"></div>
==See Also==
*[[Proteasome 3D structures|Proteasome 3D structures]]
== References ==
== References ==
<references/>
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Baker's yeast]]
[[Category: Human]]
[[Category: Large Structures]]
[[Category: Proteasome endopeptidase complex]]
[[Category: Proteasome endopeptidase complex]]
[[Category: Groll, M]]
[[Category: Groll, M]]

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA