2qki: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Human C3c in complex with the inhibitor compstatin== | ==Human C3c in complex with the inhibitor compstatin== | ||
<StructureSection load='2qki' size='340' side='right' caption='[[2qki]], [[Resolution|resolution]] 2.40Å' scene=''> | <StructureSection load='2qki' size='340' side='right'caption='[[2qki]], [[Resolution|resolution]] 2.40Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[2qki]] is a 8 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2QKI OCA]. For a <b>guided tour on the structure components</b> use [http:// | <table><tr><td colspan='2'>[[2qki]] is a 8 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2QKI OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=2QKI FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=BR:BROMIDE+ION'>BR</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=K:POTASSIUM+ION'>K</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene></td></tr> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BR:BROMIDE+ION'>BR</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=K:POTASSIUM+ION'>K</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene></td></tr> | ||
<tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=ACE:ACETYL+GROUP'>ACE</scene>, <scene name='pdbligand=NH2:AMINO+GROUP'>NH2</scene></td></tr> | <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=ACE:ACETYL+GROUP'>ACE</scene>, <scene name='pdbligand=NH2:AMINO+GROUP'>NH2</scene></td></tr> | ||
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2a74|2a74]], [[2ice|2ice]], [[2a73|2a73]], [[2i07|2i07]], [[2icf|2icf]], [[1a1p|1a1p]]</td></tr> | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2a74|2a74]], [[2ice|2ice]], [[2a73|2a73]], [[2i07|2i07]], [[2icf|2icf]], [[1a1p|1a1p]]</td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http:// | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=2qki FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2qki OCA], [http://pdbe.org/2qki PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=2qki RCSB], [http://www.ebi.ac.uk/pdbsum/2qki PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=2qki ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Disease == | == Disease == | ||
Line 34: | Line 34: | ||
==See Also== | ==See Also== | ||
*[[Complement C3|Complement C3]] | *[[Complement C3 3D structures|Complement C3 3D structures]] | ||
== References == | == References == | ||
<references/> | <references/> | ||
Line 40: | Line 40: | ||
</StructureSection> | </StructureSection> | ||
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
[[Category: Large Structures]] | |||
[[Category: Gros, P]] | [[Category: Gros, P]] | ||
[[Category: Halff, E F]] | [[Category: Halff, E F]] |
Revision as of 10:06, 10 June 2020
Human C3c in complex with the inhibitor compstatinHuman C3c in complex with the inhibitor compstatin
Structural highlights
Disease[CO3_HUMAN] Defects in C3 are the cause of complement component 3 deficiency (C3D) [MIM:613779]. A rare defect of the complement classical pathway. Patients develop recurrent, severe, pyogenic infections because of ineffective opsonization of pathogens. Some patients may also develop autoimmune disorders, such as arthralgia and vasculitic rashes, lupus-like syndrome and membranoproliferative glomerulonephritis.[1] [2] [3] [4] [5] [:] Genetic variation in C3 is associated with susceptibility to age-related macular degeneration type 9 (ARMD9) [MIM:611378]. ARMD is a multifactorial eye disease and the most common cause of irreversible vision loss in the developed world. In most patients, the disease is manifest as ophthalmoscopically visible yellowish accumulations of protein and lipid that lie beneath the retinal pigment epithelium and within an elastin-containing structure known as Bruch membrane.[6] [7] Defects in C3 are a cause of susceptibility to hemolytic uremic syndrome atypical type 5 (AHUS5) [MIM:612925]. An atypical form of hemolytic uremic syndrome. It is a complex genetic disease characterized by microangiopathic hemolytic anemia, thrombocytopenia, renal failure and absence of episodes of enterocolitis and diarrhea. In contrast to typical hemolytic uremic syndrome, atypical forms have a poorer prognosis, with higher death rates and frequent progression to end-stage renal disease. Note=Susceptibility to the development of atypical hemolytic uremic syndrome can be conferred by mutations in various components of or regulatory factors in the complement cascade system. Other genes may play a role in modifying the phenotype.[8] [9] [10] Note=Increased levels of C3 and its cleavage product ASP, are associated with obesity, diabetes and coronary heart disease. Short-term endurance training reduces baseline ASP levels and subsequently fat storage.[11] Function[CO3_HUMAN] C3 plays a central role in the activation of the complement system. Its processing by C3 convertase is the central reaction in both classical and alternative complement pathways. After activation C3b can bind covalently, via its reactive thioester, to cell surface carbohydrates or immune aggregates.[12] [13] [14] [15] [16] [17] [18] [19] Derived from proteolytic degradation of complement C3, C3a anaphylatoxin is a mediator of local inflammatory process. It induces the contraction of smooth muscle, increases vascular permeability and causes histamine release from mast cells and basophilic leukocytes.[20] [21] [22] [23] [24] [25] [26] [27] Acylation stimulating protein (ASP): adipogenic hormone that stimulates triglyceride (TG) synthesis and glucose transport in adipocytes, regulating fat storage and playing a role in postprandial TG clearance. Appears to stimulate TG synthesis via activation of the PLC, MAPK and AKT signaling pathways. Ligand for GPR77. Promotes the phosphorylation, ARRB2-mediated internalization and recycling of GPR77.[28] [29] [30] [31] [32] [33] [34] [35] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedUndesired complement activation is a major cause of tissue injury in various pathological conditions and contributes to several immune complex diseases. Compstatin, a 13-residue peptide, is an effective inhibitor of the activation of complement component C3 and thus blocks a central and crucial step in the complement cascade. The precise binding site on C3, the structure in the bound form, and the exact mode of action of compstatin are unknown. Here we present the crystal structure of compstatin in complex with C3c, a major proteolytic fragment of C3. The structure reveals that the compstatin-binding site is formed by the macroglobulin (MG) domains 4 and 5. This binding site is part of the structurally stable MG-ring formed by domains MG 1-6 and is far away from any other known binding site on C3. Compstatin does not alter the conformation of C3c, whereas compstatin itself undergoes a large conformational change upon binding. We propose a model in which compstatin sterically hinders the access of the substrate C3 to the convertase complexes, thus blocking complement activation and amplification. These insights are instrumental for further development of compstatin as a potential therapeutic. Structure of compstatin in complex with complement component C3c reveals a new mechanism of complement inhibition.,Janssen BJ, Halff EF, Lambris JD, Gros P J Biol Chem. 2007 Oct 5;282(40):29241-7. Epub 2007 Aug 6. PMID:17684013[36] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|